1 / 35

Fasproblemet

Fasproblemet. Tungmetallderivat (MIR, SIR) Anomalous dispersion Patterson kartor. Vektorrepresentation av strukturfaktorer. Vektorrepresentation av strukturfaktorer. SIR. Multiple isomorphous replacement. MIR. Friedels Lag (hkl = -h –k –l). Anomalous dispersion. Anomalous dispersion.

haines
Download Presentation

Fasproblemet

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fasproblemet • Tungmetallderivat (MIR, SIR) • Anomalous dispersion • Patterson kartor

  2. Vektorrepresentation av strukturfaktorer

  3. Vektorrepresentation av strukturfaktorer

  4. SIR

  5. Multiple isomorphous replacement

  6. MIR

  7. Friedels Lag (hkl = -h –k –l)

  8. Anomalous dispersion

  9. Anomalous dispersion

  10. Patterson map • Karta över vektorer mellan par av atomer • För varje topp finns det två atomer, visar atomer relativt till varandra ej relativt till enhetscellen • Varje atom bildar ett par (och vektor) med varje annan atom, dvs i en enhetscell med N atomer finns det N2 vektorer. N self vectors och n(n-1) andra vektorer • Intensitetet på toppen proportionell mot produkten av det ingående atomparet

  11. Patterson in plane group p2 a (0,0) b SYMMETRY OPERATORSFOR PLANE GROUP P2 1) x,y 2) -x,-y

  12. Patterson in plane group p2 a (0,0) b (0.1,0.2) SYMMETRY OPERATORSFOR PLANE GROUP P2 1) x,y 2) -x,-y

  13. Patterson in plane group p2 (-0.1,-0.2) a (0,0) b (0.1,0.2) SYMMETRY OPERATORSFOR PLANE GROUP P2 1) x,y 2) -x,-y

  14. Patterson in plane group p2 (-0.1,-0.2) a (0,0) b (0.1,0.2) SYMMETRY OPERATORSFOR PLANE GROUP P2 1) x,y 2) -x,-y

  15. Patterson in plane group p2 (-0.1,-0.2) a (0,0) a (0,0) b b (0.1,0.2) SYMMETRY OPERATORSFOR PLANE GROUP P2 1) x,y 2) -x,-y PATTERSON MAP 2D CRYSTAL

  16. Patterson in plane group p2 (-0.1,-0.2) a (0,0) a (0,0) b b (0.1,0.2) SYMMETRY OPERATORSFOR PLANE GROUP P2 1) x,y 2) -x,-y PATTERSON MAP 2D CRYSTAL

  17. Patterson in plane group p2 (-0.1,-0.2) a (0,0) a (0,0) b b (0.1,0.2) What is the coordinate for the Patterson peak? Just take the difference between coordinates of the two happy faces. (x,y)-(-x,-y) or (0.1,0.2)-(-0.1,-0.2) so u=0.2, v=0.4 SYMMETRY OPERATORSFOR PLANE GROUP P2 1) x,y 2) -x,-y PATTERSON MAP 2D CRYSTAL

  18. Patterson in plane group p2 (-0.1,-0.2) a (0,0) a (0,0) b b (0.1,0.2) (0.2, 0.4) What is the coordinate for the Patterson peak? Just take the difference between coordinates of the two happy faces. (x,y)-(-x,-y) or (0.1,0.2)-(-0.1,-0.2) so u=0.2, v=0.4 SYMMETRY OPERATORSFOR PLANE GROUP P2 1) x,y 2) -x,-y PATTERSON MAP 2D CRYSTAL

  19. Patterson in plane group p2 a (0,0) b (0.2, 0.4) If you collected data on this crystal and calculated a Patterson map it would look like this. PATTERSON MAP

  20. Now I’m stuck in Patterson space. How do I get back to x,y, coordinates? a (0,0) b Use our friends, the space group operators. The peaks positions correspond to vectors between smiley faces. (0.2, 0.4) SYMMETRY OPERATORSFOR PLANE GROUP P2 1) x,y 2) -x,-y x y -(-x –y) 2x 2y symop #1 symop #2 PATTERSON MAP

  21. Now I’m stuck in Patterson space. How do I get back to x,y, coordinates? a (0,0) b Use our friends, the space group operators. The peaks positions correspond to vectors between smiley faces. (0.2, 0.4) SYMMETRY OPERATORSFOR PLANE GROUP P2 1) x,y 2) -x,-y x y -(-x –y) 2x 2y symop #1 symop #2 PATTERSON MAP set u=2x v=2y plug in Patterson values for u and v to get x and y.

  22. Now I’m stuck in Patterson space. How do I get back to x,y, coordinates? SYMMETRY OPERATORSFOR PLANE GROUP P2 1) x,y 2) -x,-y a (0,0) b x y -(-x –y) 2x 2y symop #1 symop #2 (0.2, 0.4) set u=2x v=2y plug in Patterson values for u and v to get x and y. v=2y 0.4=2y 0.2=y u=2x 0.2=2x 0.1=x PATTERSON MAP

  23. Hurray!!!! SYMMETRY OPERATORSFOR PLANE GROUP P2 1) x,y 2) -x,-y a (0,0) b x y -(-x –y) 2x 2y (0.1,0.2) symop #1 symop #2 set u=2x v=2y plug in Patterson values for u and v to get x and y. v=2y 0.4=2y 0.2=y u=2x 0.2=2x 0.1=x HURRAY! we got back the coordinates of our smiley faces!!!!

  24. Vektorrepresentation av strukturfaktorer

  25. Vektorrepresentation av strukturfaktorer

  26. Vektorrepresentation av strukturfaktorer

  27. Vektorrepresentation av strukturfaktorer

  28. Patterson map

More Related