1 / 36

SS kaon tagger + OS taggers

SS kaon tagger + OS taggers. Míriam Calvo, Marco Musy 12th March 2009. Nnet approach. Tagging B s J/. 1st step: calibrate p0, p1 2nd step: Use the probability per event to split into 5 categories Or , use a probability per event including same side.

hal
Download Presentation

SS kaon tagger + OS taggers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SS kaontagger + OS taggers Míriam Calvo, Marco Musy 12th March 2009

  2. Nnetapproach Tagging BsJ/ • 1st step: calibrate p0, p1 • 2nd step: Use the probability per event to split into 5 categories • Or, use a probability per event including same side i = p0 + p1 ii = SS k , , e, OS k, Qvtx OS from B+J/ K+(directly) SS from BsDs (oscillation) OSof each category from B0J/ K* (oscillation) effincreasesfrom 2.2% to 3.4% using 5 categories effincreasesto 4.5% including SS k (6.4% splittinginto 5 categories)

  3. Combining SS with OS taggers • Howtoproceed? • Combine SS kaontogetanevent-per-eventprobability of mistagusingthealreadysortedtaggingcategoriesforthe OS taggers. • Someconditions are needed: • SS kaon vs Nnet output isthesameamong Bs decays. • SS and OS taggersmistag are notcorrelated. • Triggereffectalsoneedtobestudied.

  4. SS kaon vs NNET output SS K Fit p0+p1*x p0=(7±9)·10-3 p1=0.97±0.03 p0=(-1.0±0.7)·10-2 p1=1.00±0.02 p0=(0.8±1.5)·10-2 p1=0.95±0.04 BsJ/  (98k sel) BsDs (133k sel) BsDs (27k sel)  Compatible – same SSK (Nnet output) dependenceforall Bs decays BsDscan beusedtocalibrateNnet output from data BsDshigherannualyield, butpoorproper time resolution (use doubletaggingmethod)

  5. BsJ/ Taggercorrelations Correlationmatrix (Taggerdecision): ------------------------------------------------  e OS k SS k Qvtx : +1.00 e: -0.01 +1.00 OS k: +0.03 +0.03 +1.00 SS k: +0.02 +0.01 +0.03 +1.00 Qvtx: +0.10 +0.07 +0.19 +0.02 +1.00 ------------------------------------------------ Higher correlations between Q_vrtx and OS muon &kaon taggers but not with Same Side

  6. OS taggers SS kaon true true Offset due to OS correlations Mistag is under-estimated (product of individual taggers probabilities) 1- p 1- p + Correlation Qvtx and other OS taggers is ~ 10-20% true OS+SS 1- p

  7. Reminder • OS taggers () calibrated with B+J/K+. • SS kaon () calibrated with BsDs. • Get rid of OS correlations by measuring OS in 5 categories (Nnet approach) in a control sample as B0J/K*. OS taggers • Bd2JpsiK* •  (cat1) = 44.2±0.3 •  (cat2) = 36.3±0.5 •  (cat3) = 29.0±0.6 •  (cat4) = 23.4±0.7 • (cat5) = 18.2±0.5 • (combined) • OS = 36.25 ± 0.24% • tag = 44.97 ± 0.16% • eff = 3.40 ± 0.11% 1 2 3 4 5 Prob

  8. OS taggers SS kaon true true OS taggers Taking measured  In 5 categories (to get rid of correlations) 1- p 1- p + true Correlation OS taggers – SS kaon is 2.2% OS+SS 1- p

  9. Getting a probability per eventfrom OS+SS OS+ SameSideprobability: • Bd2JpsiK* •  (cat1) = 44.2±0.3 •  (cat2) = 36.3±0.5 •  (cat3) = 29.0±0.6 •  (cat4) = 23.4±0.7 • (cat5) = 18.2±0.5 p i, OS Probability per eventforBs2JpsiPhi eff(OS) = 3.40% • (average) • = 35.77 ± 0.21% • tag = 55.54 ± 0.16% • eff = 4.50 ± 0.13% Splitting into 5 categories 1 2 3 4 5 • (combined) • = 33.19 ± 0.21% • tag = 55.54 ± 0.16% • eff = 6.28 ± 0.15% p

  10. Probability per eventwithoutQvtx • OS (combined) • = 31.1 ± 0.3% • tag = 20.48 ± 0.13% • eff = 2.93 ± 0.10% (< 3.40%) true OS taggers alone (without Qvtx) • OS + SS (average) • = 32.10 ± 0.25% • tag = 38.18 ± 0.16% • eff = 4.89 ± 0.14% (> 4.50%) • OS + SS (combined) • = 30.10 ± 0.25% • tag = 38.18 ± 0.16% • eff = 6.05 ± 0.14% (< 6.41%) 1- p No bias due to correlations Approximately same effective efficiency without Qvtx (work on-going to improve this tagger)

  11. BsJ/ intoCategories… withQvtx withoutQvtx

  12. L0 TISTOSTOBBING Phase space corrections…

  13.  vs Nnet  Before L0 Fit p0+p1*x p0=(7±9)·10-3 p1=0.97±0.03 p0=(-1.0±0.7)·10-2 p1=1.00±0.02 p0=(0.8±1.5)·10-2 p1=0.95±0.04 SS K BsJ/  (98k sel) BsDs (133k sel) BsDs (27k sel) Samedependencebefore/after L0. Nnet output After L0 SS K BsJ/  (92k sel) BsDs (63k sel) BsDs (24k sel) Fit p0+p1*x p0=(10±9)·10-3 p1=0.96±0.03 p0=(-8±8)·10-4 p1=0.95±0.01 p0=(4.3±1.6)·10-3 p1=0.92±0.05 Nnet output

  14.  vs Bs pt Fit p0+p1*x p0=0.408±0.006 p1=(-7.4±0.7)·10-3 p0=0.417±0.008 p1=(-9.1±0.7)·10-3 p0=0.416±0.013 p1=(-9.2±1.1)·10-3 After L0 SS K BsJ/  BsDs BsDs • Differences in phasespacecan introduce differences in  of a givencategoryamongdecays. • Corrections can beperformed once knownthe(Bs pt) dependence (obtainedfrom control channels). rec’ted Bs pt Fit p0+p1*x p0=0.337±0.007 p1=(1.8±0.9)·10-3 p0=0.30±0.01 p1=(3.4±1.0)·10-3 p0=0.340±0.016 p1=(1.9±1.6)·10-3 OS K rec’ted Bs pt

  15. Corrections might be needed when splitting into 5 categories (Nnet approach) Bs pt  vs Bs pt Cat 1 Cat 2 Cat 1 Cat 2 Cat 3 Cat 4 Cat 3 Cat 4 Cat 5 Cat 5 BsJ/  BsDs BsDs OS + SS taggers after L0

  16. (BsJ/ ) OS taggers SS tagger  vs Bs pt cat1 cat2 cat1 cat2 cat3 cat4 cat3 cat4 cat5 cat5 all taggers 1/6 of eventsinclude SS kaon Nearly flat! • (OS+SS) of eachcategory compatible for • BsJ/  andBsDs

  17. PID approach Correctionsneededalsofor: • OS, e, k, Qvtx from B+J/ K+(directly) B0J/ K* (from oscillation) • SSkfrom BsDs  (double tagging) BsDs (from oscillation) • 41 possible combinations, sort into 5 categories according to its : eff ~ 4.9%  Cat 4 Cat 3 Cat 2 Cat 5 Cat 1 PID combination

  18. After L0 BsDs Nnet: BsJ/ Nnet: (BsDs numbers in the backup)

  19. TisTosTobbing L0 After L0 Before L0 Bs pt (GeV) (TIS includes TIS+TOS) L0 TOS L0 TIS Bs pt (GeV) (TIS: remaining differences due to offline selection)

  20. BsDs TIS (55.1%) TOS (44.2%) Nnet: BsJ/ TIS (23.5%) TOS (74.3%) Nnet:

  21. Conclusions Same Side Kaon can be used in combination with Opposite Side taggers to get an event-per-event probability of mistag. • From Nnet output calibrated with control channels. • eff~6.3% (3.4% without SS) Qvtx main source of OS tagger correlations. • Get rid of correlations by measuring global OS wrong tag fraction from control channel (5 categories). • Actually without it eff~6%. • Needs to be studied further. Trigger effects matters to get a ‘global’ , but not as event-per-event weight.

  22. BackUp

  23. BsDs BsJ/

  24. Bs2JpsiPhi Bs2DsPi Bs2DsMuNu OS kaon SS kaon p0=(40.6±0.8)·10-2 p1=(-7.7±0.8)·10-3 p0=(40.8±1.4)·10-2 p1=(-9.7±1.2)·10-3 p0= (39.0±1.7)·10-2 p1=(-7.4±1.5)·10-3  p0=(34.3±0.9)·10-2 p1=(1.6±1.1)·10-3 p0=(31.9±2.0)·10-2 p1=(2.6±1.8)·10-3 p0= (33.7±2.3)·10-2 p1=(2.6±2.2)·10-3  TOS TOS B pt B pt p0=(31.0±1.4)·10-2 p1=(2.9±1.4)·10-3 p0=(29.3±1.2)·10-2 p1=(3.1±1.1)·10-3 p0= (33.3±2.4)·10-2 p1=(1.8±2.2)·10-3  TIS  p0=(42.7±1.2)·10-2 p1=(-8.2±1.2)·10-3 p0=(42.9±1.0)·10-2 p1=(-9.4±0.9)·10-3 p0= (43.9±1.9)·10-2 p1=(-11.0±1.7)·10-3 TIS B pt B pt Not expected to be different between TIS and TOS (just a check)

  25. SS kaon tagger  BsJ/  BsDs BsDs Fit p0+p1*x p0=(0.9±1.1)·10-2 p1=0.96±0.03 p0=(-1.8±1.3)·10-2 p1=0.98±0.04 p0= (0.8±2.0)·10-2 p1=0.90±0.06 TOS NNet  TIS Fit p0+p1*x p0=(-0.1±1.7)·10-2 p1=0.98±0.06 p0=(-0.6±1.2)·10-2 p1=0.97±0.03 p0= (0.3±2.4)·10-2 p1=0.91±0.07 NNet Not expected to be different between TIS and TOS (just a check)

  26. BsDs Nnet: Double tagging method: F = probability that taggers agree = Nagree/NDT

  27. BsDs momentumcorrection (from S. Poss)

  28. SameSideKaon Neural net output calibration From BsDs control channel

  29. BsDs offline selection Jeremie Borel / Vladimir Gligorov (DaVinci v19r12 / v22r0p2) Yield ~ 146/183k (after L0) DC06 selected 113/134k (~39/37k with SSK tagger); 50/63k after L0 Backgrounds: B/S~0.34/0.41 _ BsDs  BsDs X BdD  bDs p bc  Signal Bkg 29 m (GeV/c2) m (GeV/c2)

  30. PDFsused in ROOFIT SIGNAL: BACKGROUND: sig RooBDecay mixState= unmixedifcharge() = tagger_decision mixedifopposite (bkg=0.5) RooDecay acceptance: s, s, ms fixed

  31. Fitresults Floating Parameter FinalValue +/- Error -------------------- -------------------------- B/S 3.2075e-01 +/- 2.93e-03 a 7.1132e+00 +/- 1.90e-01 bkg_S1 1.8975e-02 +/- 6.73e-02 bkg_m1 -1.9603e-01 +/- 2.44e-01 bkg_mexp -3.7567e-01 +/- 1.37e-01 bkg_tau 6.7124e-01 +/- 5.08e-03 fr1 3.4824e-01 +/- 6.33e-03 mean 3.8342e-03 +/- 7.58e-04 omegaB 5.1069e-01 +/- 3.23e-03 par0 -2.1409e-03 +/- 5.11e-03 par1 9.6138e-01 +/- 1.31e-02 sig_mass_mB 5.3683e+00 +/- 5.82e-05 sig_mass_sB 1.1764e-02 +/- 1.00e-04 sig_mass_sB2 1.9794e-02 +/- 1.58e-04 sigma 4.3791e-02 +/- 8.62e-04 SS k Fit: p0+p1*x p0 = (-6±7)·10-3 p1 = 0.99±0.02 RooFit p0 =(-2±5)·10-3 p1 =0.96 ±0.01 Nnet

  32. Offline Selectioncomparison BsDs

  33. 3

  34. Jeremie/ Vava m = ± 50 / 50MeV (HLT eff missing) +25% B/S ~ 0.34/ 0.43 (Increase of bkg because loose PID cuts for the bachelor pion) +25%

  35. BsDs offline selected events Vava Jeremie B mass B p B pt B 

  36. Bkg Bs mass Bs2DsX Bd2DPi Lb2LcPi LbDsP Vava Jeremie bb-bar

More Related