1 / 10

The Quincke rotor : An experimental model for the Lorenz attractor

The Quincke rotor : An experimental model for the Lorenz attractor. E. Lemaire, L. Lobry, F. Peters. LPMC, Groupe « Fluides Complexes ». silica particle (100 m m). transformer oil. E ~ 1 kV/cm. f ~ 100 Hz. E. E. -. -. +. -. +. -. +. -. E. +. -. -. +. -. -. +. +. +.

halia
Download Presentation

The Quincke rotor : An experimental model for the Lorenz attractor

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Quincke rotor : An experimental model for the Lorenz attractor E. Lemaire, L. Lobry, F. Peters LPMC, Groupe « Fluides Complexes » silica particle (100 mm) transformer oil E ~ 1 kV/cm f ~ 100 Hz E

  2. E - - + - + - + - E + - - + - - + + + Quincke rotation in suspensions : apparent viscosity decrease : Q conductivity enhancement : isolated particle dynamics Chaotic regime

  3. The Quincke rotation GE - - - - - - - - - - - + E E - + + + + + + + + + + + + < 0 e1 s e2  Relaxation equation polarisation coefficient (free charges) Maxwell time equilibrium dipole particle convection

  4. GE wst Gv -Gv E GE GE (E<Ec) 0 E EC w Stationary solution  Electric torque:  Viscous torque : a viscous coefficient  Stationary state :

  5. The Quincke rotor z y cylinder transformer oil E=2 EC E=4 EC Relaxation equation (2D) : Mechanical equation :

  6. flow current 40 40 t masse Maxwell time tM 30 30 r Chaos gravity electric field 20 20 electric dipole gravity center 10 10 0 0 5 5 10 10 15 15 20 20 Pr inertia viscous drag Lorenz equations Variable change : t*=t/tM b=1 Laboratory water wheel (R. Malkus, 1972) : leaky compartment Pr=5 r=31

  7. 50 (a) Z 45 40 -20 0 20 X 12 (c) 11 10 9 8 8 10 12 Chaotic dynamics Poincaré section (plane X=Y) First return map

  8. laser photodiode transformer oil 1 cm 0-15 kV Experimental set-up Rotor : glass capillary length L=5 cm, radius a=1mm permittivity e2=2.4 Transformer oil : conductivity s=2.7.10-10 S.m-1 permittivity e1=2.1 viscosity h=14 mPa.s tM=150 ms Pr=2.5 tmecha=60 ms Ec=0.97 kV/cm

  9. W (rad.s-1) E2 (kV.cm-1)2 Experimental results Bifurcation diagram First bifurcation : Ec exp=2.4 kV/cm (Ec theo=0.97 kV/cm) solid friction Second bifurcation : Echaos exp=6.5 kV/cm (Echaos theo=5.5 kV/cm) W (rad.s-1) t (s) E=6.6 kV/cm

  10. |Wk+1| (rad.s-1) |Wk| (rad.s-1) 80 73.5 |Wk+1| (rad.s-1) 66.5 60 53.5 53.5 66.5 80 |Wk| (rad.s-1) Experimental results First return map experimental Lorenz-type chaos numerical

More Related