200 likes | 306 Views
Warm Up Evaluate each expression for x = 1 and y =–3. 1. x – 4 y 2. –2 x + y Write each expression in slope-intercept form. 3. y – x = 1 4. 2 x + 3 y = 6 5. 0 = 5 y + 5 x. 13. –5. y = x + 1. y = x + 2. y = – x. Objectives.
E N D
Warm Up Evaluate each expression for x = 1 and y =–3. 1.x – 4y2. –2x + y Write each expression in slope-intercept form. 3.y –x = 1 4. 2x + 3y =6 5. 0 = 5y + 5x 13 –5 y = x + 1 y =x + 2 y = –x
Objectives Identify solutions of linear equations in two variables. Solve systems of linear equations in two variables by graphing.
Vocabulary systems of linear equations solution of a system of linear equations
A system of linear equations is a set of two or more linear equations containing two or more variables. A solution of a system of linear equations with two variables is an ordered pair that satisfies each equation in the system. So, if an ordered pair is a solution, it will make both equations true.
3x – y =13 3(5) – 2 13 0 2 – 2 0 15 – 2 13 0 0 13 13 Example 1A: Identifying Solutions of Systems Tell whether the ordered pair is a solution of the given system. (5, 2); 3x – y = 13 Substitute 5 for x and 2 for y in each equation in the system. The ordered pair (5, 2) makes both equations true. (5, 2) is the solution of the system.
–x + y = 2 x + 3y = 4 –(–2) + 2 2 –2 + 3(2) 4 4 2 –2 + 6 4 4 4 Example 1B: Identifying Solutions of Systems Tell whether the ordered pair is a solution of the given system. x + 3y = 4 (–2, 2); –x + y = 2 Substitute –2 for x and 2 for y in each equation in the system. The ordered pair (–2, 2) makes one equation true but not the other. (–2, 2) is not a solution of the system.
y = 2x – 1 y = –x + 5 All solutions of a linear equation are on its graph. To find a solution of a system of linear equations, you need a point that each line has in common. In other words, you need their point of intersection. The point (2, 3) is where the two lines intersect and is a solution of both equations, so (2, 3) is the solution of the systems.
Check Substitute (–1, –1) into the system. y = –2x– 3 y = x (–1) (–1) (–1)–2(–1)–3 –12– 3 –1 –1 –1 – 1 Example 2A: Solving a System by Graphing Solve the system by graphing. Check your answer. y = x Graph the system. y = –2x – 3 The solution appears to be at (–1, –1). y = x • (–1, –1) y = –2x – 3 The solution is (–1, –1).
y = x + 5 y = x+ 5 y = –2x– 1 3–2+ 5 3 –2(–2)– 1 y = –2x – 1 3 3 3 4 – 1 3 3 Check It Out! Example 2a Solve the system by graphing. Check your answer. y = –2x – 1 Graph the system. y = x + 5 The solution appears to be (–2, 3). Check Substitute (–2, 3) into the system. The solution is (–2, 3).
Example 3:Problem-Solving Application Wren and Jenni are reading the same book. Wren is on page 14 and reads 2 pages every night. Jenni is on page 6 and reads 3 pages every night. After how many nights will they have read the same number of pages? How many pages will that be?
Make a Plan Total pages every night already read. number read is plus Wren y = 2 x 14 + 1 x y 3 + Jenni = 6 Example 3 Continued Write a system of equations, one equation to represent the number of pages read by each girl. Let x be the number of nights and y be the total pages read.
2 Solve (8, 30) Nights Example 3 Continued Graph y = 2x + 14 and y = 3x + 6. The lines appear to intersect at (8, 30). So, the number of pages read will be the same at 8 nights with a total of 30 pages.
2(8) + 14 = 16 + 14 = 30 3(8) + 6 = 24 + 6 = 30 3 Look Back Example 3 Continued Check (8, 30) using both equations. Number of days for Wren to read 30 pages. Number of days for Jenni to read 30 pages.
Check It Out! Example 3 Video club A charges $10 for membership and $3 per movie rental. Video club B charges $15 for membership and $2 per movie rental. For how many movie rentals will the cost be the same at both video clubs? What is that cost?
Make a Plan Total cost member- ship fee. for each rental is price plus Club A y = 3 x 10 + 1 x y 2 + 15 Club B = Check It Out! Example 3 Continued Write a system of equations, one equation to represent the cost of Club A and one for Club B. Let x be the number of movies rented and y the total cost.
2 Solve Check It Out! Example 3 Continued Graph y = 3x + 10 and y = 2x + 15. The lines appear to intersect at (5, 25). So, the cost will be the same for 5 rentals and the total cost will be $25.
3(5) + 10 = 15 + 10 = 25 2(5) + 15 = 10 + 15 = 25 3 Look Back Check It Out! Example 3 Continued Check (5, 25) using both equations. Number of movie rentals for Club A to reach $25: Number of movie rentals for Club B to reach $25:
Lesson Quiz: Part I Tell whether the ordered pair is a solution of the given system. 1. (–3, 1); 2. (2, –4); no yes
Lesson Quiz: Part II Solve the system by graphing. 3. 4. Joy has 5 collectable stamps and will buy 2 more each month. Ronald has 25 collectable stamps and will sell 3 each month. After how many months will they have the same number of stamps? How many will that be? y + 2x = 9 (2, 5) y = 4x – 3 4 months 13 stamps
Make a Graphic Organizer • Must fold • Must have color • Must write out the problem and include somewhere in the organizer • Must show all 3 methods of solving the problem in the organizer • (Hint: All 3 answers should be the same!) Be Creative!