1 / 27

Shell Model in Complex Energy Plane

Shell Model in Complex Energy Plane. N. Sandulescu. Institute of Atomic Physics, Bucharest. Espace de Structure Nucleaire Theorique, Saclay. Resonances and virtual states: Berggren representation Shell model with resonances and virtual states Application: the structure of 11 Li.

Download Presentation

Shell Model in Complex Energy Plane

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Shell Model in Complex Energy Plane N. Sandulescu Institute of Atomic Physics, Bucharest Espace de Structure Nucleaire Theorique, Saclay • Resonances and virtual states: Berggren representation • Shell model with resonances and virtual states • Application: the structure of 11Li *Collaborators: R.Id. Betan (Rosario) , R.J.Liotta (Stockholm), T. Vertse (Debrecen) **Similar work: N. Michel, W.Nazarewicz, M. Ploszajczak, K. Bennaceur,…

  2. Resonances and virtual states 10Li virtual state resonances 9Li

  3. Single-particle resonant states 79Ni 78Ni

  4. Resonant states Decaying state (Gamow,1928) divergence ! « Capturing » state:

  5. Resonant states General defintion ( Siegert, 1939) « Resonances »: out-going solutions Time-reversed solutions :

  6. Poles of S-matrix Im k • k-plane : Re k • energy plane: « anti-resonance » « anti-bound » Re E « resonance » « crazy »

  7. Gamow states : normalisation • Bi-orthogonal set : • Regularisation: Zeldovich (’60) ; Gyarmati & Vertse (1971) complex quantity ! • Matrix elements: • Note : Gamow functions rigged Hilbert space

  8. Berggren representation • Real-energy axis: • Complex-energy plane: Re k L (T. Berggren, Nucl. Phys. A108,265,1968)

  9. Two-particle resonances ; (R.Betan, R.J.Liotta, N.S., T. Vertse, Phys.Rev. Lett. 89, 042501, 2002)

  10. Single-particle states

  11. Two-particle states

  12. Two-particle resonant states 80Ni 78Ni

  13. Two-particle resonant states ( R.Betan, R.J.Liotta, N.S., T. Vertse, Phys. Rev. Lett. 89, 042501, 2002 )

  14. Two-particle resonant states ( R.Betan, R.J.Liotta, N.S., T. Vertse, Phys. Rev. Lett. 89, 042501,2002 )

  15. Resonances and anti-bound states 10Li anti-bound resonances

  16. Anti-bound states Im k Re k • definition: • wave function: (A.B.Migdal et al, Sov.J.Nucl.Phys. 14, 488, 1872 )

  17. Energy contours in Berggren representation Anti-bound state L Resonant states L

  18. Resonances and anti-bound states 10Li anti-bound resonances Note: does a unique mean field exist ? NO !

  19. Effective mean fields for 10Li H. Esbensen, G.F. Bertsch, K. Hencken, Phys.Rev.C56(1997)3054 Particle-vibration couplings: N. Vinh Mau, Nucl. Phys. A592(1995)33 F. Barranco et al, Eur. Phys. J. A11(2001)385 J.C.Pacheco, N. Vinh Mau, Pys.Rev.C65(2002)044004

  20. Ground state of 11Li: pole structure (R.Betan, R.J.Liotta, N.S., T. Vertse, Phys. Lett. B584, 48, 2004 )

  21. Two-particle resonant states in 11Li (R.Betan, R.J.Liotta, N.S., T. Vertse, Phys. Lett. B584, 48, 2004 )

  22. Conclusions Main advantages of shell model in complex energy plane: • based on relevant continuum configurations • direct access to multi-particle resonant states Open problems : • multi-particle resonant states: decays channels ? • efficient truncation schemes for large systems ? - Density Matrix Renormalisation Group ( N. Michel, W. Nazarewicz, M. Ploszajczak, J. Rotureau, nucl-th/0401036) - Lee-Suzuki similarity transformation - Multi-reference perturbation method ( G.Hagen, M.Hjorth-Jensen, J. Vagen, nucl-th/0410114 )

  23. Decay channels R r ……………. …………….

  24. Localisation of scattering states ( R.Betan, R.J.Liotta, N.S., T. Vertse, Phys. Lett. B584, 48, 2004 )

  25. Anti-bound states: trajectories

More Related