200 likes | 220 Views
Unit III Inequalities. < “is less than ” > “is greater than ” £ “is less than or equal to ” ³ “is greater than or equal to ”. What is an inequality?.
E N D
< “is less than” > “is greater than” £ “is less than or equal to” ³ “is greater than or equal to” What is an inequality? Inequalities work like equations, but they tell you whether one expression is bigger or smaller than the expression on the other side. Aninequalityis like an equation, but instead of an equal sign (=) it has one of these signs: An inequality is a mathematical sentence that states that two expressions are not equal.
"Solving'' an inequality means finding all of its solutions. A "solution'' of an inequality is a number which when substituted for the variable makes the inequality a true statement. Inequality symbols
Graphing Inequalities. Graph each of these inequalities. 8. State the inequality represented on the number line below. 1) l£ 3 2) m < –2 3) j³ 10 4) 3 ³y 5) k > 6 • 10 £x • j > –5 x³ –1 k > –7 k£ 2
Applications Anthony is shopping for a birthday gift for his cousin Robert. He has $25 dollars in his wallet. Write an inequality that shows how many dollars he can spend on the gift. a£ 25 Teresa is only allowed to swim outside if the temperature outside is at least 85 °F. Write an inequality that shows the temperature in degrees Fahrenheit at which Teresa is allowed to swim. t³ 85 In order to achieve an ‘A’ in math, Ivy needs to score more than 95% on her next test. Write an inequality that shows the test score Ivy needs to achieve in order to earn her ‘A’ in math. i > 95
–1 0 1 2 3 4 5 6 –7 0 7 Addition/Subtraction Property for Inequalities If a < b, then a + c < b + c If a < b, then a - c < b – c In other words, adding or subtracting the same expression to both sides of an inequality does not change the inequality. Ex. A Solve and graph the solution of x – 2 > 5 on a number line. Ex. B Solve and then graph the solution of 3x£ 6 + 2x on a number line. Solve: x – 2 > 5 Solve: 3x£ 6 + 2x -2x -2x Subtraction property of inequalities x – 2 > 5 +2 +2 Using addition property of inequalities x£ 6 x > 7 Graph: Graph:
Practice • Solve and graph each inequality. • x + 2 < 8 x < 6 • 2) j + 2 ³ –3 j³ –5 • 3) 4x – 3 < 3x x < 3 • 4) 2t + 1 £t – 10 t£ –11 • 5) 6(x – 1) ³ 5(x + 2) x³ 16
Applications Stephen needs to buy a new uniform for soccer. He already has $25, but the uniform costs $55. He participates in car washes to help pay for the uniform. Write an inequality to represent the amount of money, x, that Stephen needs to earn from the car washes in order to be able to afford the new uniform. Use this inequality to find the minimum amount of money he needs to earn. x³ 30; minimum = $30 An art gallery sells Peter’s paintings for $x, and keeps $100 commission. This means Peter is paid $(x – 100) for each painting. If Peter wants to make at least $750 for a particular painting, write an inequality to represent the amount, x, that the gallery needs to sell that painting for. Use this inequality to find the minimum price of the painting. x³ 850 minimum = $850
Multiplication/Division Properties for Inequalities when multiplying/dividing by a positive value If a < b AND c is positive, then ac < bc If a < b AND c is positive, then a/c < b/c In other words, multiplying or dividing the same POSITIVE number to both sides of an inequality does not change the inequality. Solve Solution Given Inequality Multiplication Property Solve Solution Given Inequality ___ ___ 3 3 Division Property x< 4 x > 10
a b c c Multiplication/Division Properties for Inequalitieswith NEGATIVE Numbers Given real numbers a, b, and c, if a > b and c < 0 then ac < bc. Given real numbers a, b, and c, if a > b and c < 0 then < In other words, multiplying or dividing the same NEGATIVE number to both sides of an inequality REVERSES the direction of the inequality, otherwise the inequality statement will be false. Solve: Solution: Solve: Solution: x < –4 Remember — the sign needs to change. Remember — the sign needs to change.
Practice 1)6) 2(x – 3) – 3(2 – x) > 8 2)7) –4(3 – 2x) > 5x + 9 3) 8) 7 – 2(m – 4) £ 2m + 11 4) 9) 0.5(x – 1) – 0.75(1 – x) < 0.65(2x – 1) x > –12 5) 10) 3(2x + 6) – 5(x + 8) £ 2x – 22 x > 4 x > 7 m³ 1 x³ 0
Applications Laura has $5.30 to spend on her lunch. She wants to buy a chicken salad costing $4.20 and decides to spend the rest on fruit. Each piece of fruit costs 45¢. Write an inequality to represent this situation, and then solve it to find how many pieces of fruit Laura can buy. 4.20 + 0.45x£ 5.30x£ 2.44 Laura can buy 2 pieces of fruit Audrey is selling magazine subscriptions to raise money for the school library. The library will get $2.50 for every magazine subscription she sells. Audrey wants to raise at least $250 for the library. Write and solve an inequality to represent the number of magazine subscriptions, x, Audrey needs to sell to reach her goal. 2.50x³ 250x³ 100 Audrey must sell at least 100 magazine subscriptions
Multistep Inequalities To simplify and therefore solve an inequalityin one variable such as x, you need to isolate the terms in xon one side and isolate the numberson the other. Solving Inequalities 1. Multiply out any parentheses 2. Simplifyeach side of the inequality. 3. Remove number terms from one side 4. Removex-terms from the other side. 5. Multiply or divide to get an x-coefficient of 1
4(x + 1) 7(a – 4) 6 2 Practice 1) 2) 3) 4) 5) 6x – 2 £ 4(x + 5) x£ 11 5x + 1 > 3(x + 3) x > 4 > 2x x < 0.5 8(x – 1) ³ 4x – 4 x³ 1 £ 4a a > -28
Compound Inequalities A compound inequality is two inequalities together — for example, 2x + 1 < 5 and 2x + 1 > –1. 2x + 1 < 5 and 2x + 1 > –1 Solve and graph the inequality –1 < 2x + 1 < 5. -1 -1 -1 The word “and” means the compound inequality below is a “conjunction.” The goal is to get x by itself. –1 < 2x + 1 < 5 Subtract 1 You can rewrite a conjunction as a single mathematical statement, usually involving two inequality signs, like this: –2 < 2x < 4 Divide by 2 to get x in the middle –1 < x < 2 the solution is any number greater than –1 but less than 2 –1 < 2x + 1 < 5 * The solution to a conjunction must satisfy both inequalities — both inequalities must be true.
8 x > 3 Disjunction Problems Include the Word “Or” Here’s an example of a disjunction: 3x – 4 < –4 or 3x –4 > 4 The solution to a disjunction is all the numbers that satisfy eitherone inequality orthe other. Solve and graph the solution set of 3x – 4 < –4 or 3x – 4 > 4. 3x – 4 + 4 < –4 or 3x – 4 + 4 > 4 3x – 4 + 4 < –4 + 4 or 3x – 4 + 4 > 4 + 4 Add 4 3x < 0 or 3x > 8 x < 0 or Divide by 3
–11 < < 5 c – 9 7 Compound Inequalities Practice 1) 2) 3) 4) 5) 6) –11 < –4g + 5 < –3 –16 < –4g < –8 2 < g < 4 8c – 4 > 92 or 8c – 4 < –12 8c > 96 or 8c < –8 c > 12 or c < –1 2y + 2 < 4y – 4 or 4y – 4 > 5y + 2 y > 3 or y < –6 –9g – 7 £ 2 or –9g – 7 > 20 –9g£ 9 or –9g > 27 g³ –1 or g < –3 3 £ 3(2x – 5) £ 9 3 £x£ 4 –77 < c – 9 < 35 –68 < c < 44
5 9 The sum of three consecutive even integers is between 82 and 85. Find the numbers. 26, 28, and 30 The formula C = (F – 32) is used to convert degrees Fahrenheit to degrees Celsius. The temperature inside a greenhouse falls to a minimum of 65 °F at night and rises to a maximum of 120 °F during the day. Find the corresponding temperature range in degrees Celsius. 18 °C – 49 °C