1 / 18

Interjet Energy Flow

Interjet Energy Flow. Patrick Ryan University of Wisconsin Claire Gwenlan Oxford University April 18, 2005. Monday Meeting http://www-zeus.desy.de/~pryan/rap_gap. Hard Diffractive g p. Use pQCD to study diffraction Hard Diffractive Photoproduction Hard: High E T Jets (E T > 5 GeV)

hamlin
Download Presentation

Interjet Energy Flow

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Interjet Energy Flow Patrick Ryan University of Wisconsin Claire Gwenlan Oxford University April 18, 2005 Monday Meeting http://www-zeus.desy.de/~pryan/rap_gap

  2. Hard Diffractive gp • Use pQCD to study diffraction • Hard Diffractive Photoproduction • Hard: High ET Jets (ET > 5 GeV) • Diffractive: Gap between jets • Photoproduction: Q2 ~ 0 Standard Diffraction Hard Diffractive gp q Rapidity Gap t

  3. Topology of Rapidity Gaps 2p g Remnant Leading Jet f Leading Trailing Jet Jet Gap g Remnant Trailing 3 Jet 2p 0 h p Remnant f h Distance between jet centers: Dh • ETGap = Total ET between leading and trailing jets • Gap Event: ETGap < ETCut • Gap indicates color singlet exchange -2.4 2.4 0 -3

  4. The Gap Fraction All Dijet Events with large Rapidity separation Dijet Events with large Rapidity separation and ETGap < ETCut • Non-Singlet • f(Dh) decreases exponentially with Dh • Particle production fluctuations  Gap • Non diffractive exchange • Singlet • f(Dh) constant in Dh Expectation for Behavior of Gap Fraction (J.D. Bjorken, V.Del Durca, W.-K. Tung)* fGap fGapn-s fGapSinglet 2 4 3 *Phys. Rev. D47 (1992) 101 Phys Lett. B312 (1993) 225

  5. Simulation of gp EventsZEUS - AMADEUS • PYTHIA 6.1 and HERWIG 6.1 MC • Direct and Resolved MC generated separately • Resolved MC includes Multi Parton Interactions • Dir and Res combined by fitting xg distributions to data (next slide) • PDFs • PDF(p): GRV-LO • PDF(g): WHIT 2 • Color Singlet Exchange MC • PYTHIA: High-t g • Purpose is simply to match the data • Note: Rapidity Gap not due to photon exchange • HERWIG: BFKL • Uses BFKL Pomeron as exchange object in Rapidity Gap events

  6. ZEUS 96-97 Data Luminosity: 38 pb-1 Offline Cleaning Cuts |zvtx| < 40 cm No Sinistra95 e+ with Pe > 0.9, Ee > 5 GeV, ye < 0.85 0.2 < yjb < 0.85 Jet Selection ET1,2 > 5.1, 4.25 GeV (ZUFO) |h1,2| < 2.4 ½|h1 + h2| < 0.75 [(Spx)2 + (Spy)2] / SET < 2 GeV1/2 2.5 < |h1 - h2| < 4.0 4 Gap Samples ETCUT = 0.6, 1.2 1.8, 2.4 GeV (ZUFO) HPP Trigger FLT Slot 42 SLT HiEt I/II/III TLT HPP14 (DST bit 77) ~70,000 Inclusive Events Event Selection and xg FittingZEUS - AMADEUS PYTHIA xgFit to Data Direct + Resolved Direct PYTHIA: 38% Direct + 61% Resolved HERWIG: 54% Direct + 46% Resolved Mixing used in all calculations

  7. Simulation of gp DataZEUS - AMADEUS PYTHIA HERWIG Data well simulated by MC

  8. Simulation of Gap Energy using ZEUS - AMADEUS • HERWIG does not describe Gap Energy • Standard ZEUS HERWIG • Proton PDF: GRV 5 • Photon PDF: WHIT 2 • pTMin = 1.8 GeV • pTMin: Min pT of all scatters in hadronic jet production • Add CS until a reasonable match with data

  9. ET GapAvg Corr. and HZTOOL Tuning Corr. w/ AVG AMADEUS vs. HZTOOL HERWIG Corr. w/ AMADEUS PYT/HER • HZTOOL HERWIG • pTMin = 3.0 GeV • pPDF: CTEQ5L gPDF: SaS 2D

  10. Systematics PYTHIA HERWIG • Order of Variables • +/- 1s: ET1,ET2,h1,h2, ½|h1+h2|,Dh,YJB,pT/ET1/2,ye,Zvtx,ETCut • +/- 3%: ET and YJB (Cal Energy Scale)

  11. Comparisons between Analyses PR: PYTHIA CG: PYTHIA PR: AVERAGE CG: PYTHIA • Agreement between the analyses

  12. Request Preliminary

  13. Summary on gp with Rap Gap • Conclusions • HERWIG + BFKL and PYTHIA + High-t g describe data • Evidence for Color Singlet Exchange • Good Agreement between analyses (P.R & C.G)

  14. Simulation of ETGap PYTHIA HERWIG Data not described by MC

  15. Inclusive and Gap Cross Sections Compare gp Data to HERWIG Inclusive Error bars show stat + sys errors Gap Ratio of above plots Gap Fraction:

  16. Gap Fractions for Different Gap ET • Observed excess of Data over MC without CS exchange • Data has better agreement for MC than without CS • Suggests presence of CS exchange

  17. Previous Preliminary • Preliminary for ICHEP 2002 • Very old • Different binning • Different from CG thesis Preliminary: ● CG ThesisPoints ●

  18. Possible Preliminary

More Related