420 likes | 747 Views
Состояний типа «шредингеровский кот» в полупроводниках и низкоразмерных структурах. В. Я. Демиховский, Нижегородский государственный университет им. Н.И.Лобачевского, г.Нижний Новгород XIX Уральская школа по физике полупроводников, 2012 г.
E N D
Состояний типа «шредингеровский кот» в полупроводниках и низкоразмерных структурах В. Я. Демиховский, Нижегородский государственный университет им. Н.И.Лобачевского, г.Нижний Новгород XIX Уральская школа по физике полупроводников, 2012 г.
Как реализовать суперпозицию состояний «мертвый-живой» кот?
Энергетический спектр и характерные временаэволюции Разложение энергетического спектра в ряд Тейлоравблизи энергии -период классических осцилляций - время восстановления пакета - время дробного восстановления - период Zitterbewegung
Электронный волновой пакет в ридберговском атоме Энергетический спектр: Собственные функции: Локализованный волновой пакет в момент t=0:
Релятивистский спектр: состояния с положительными и отрицательными энергиями, дираковское море
Уравнение Дирака: осцилляторная динамика релятивистского электрона Уравнение Дирака может быть записано в следующей форме: где Матрицы Дирака Здесь матрицы удовлетворяют соотношениям:
Начальный волновой пакет – суперпозиция состояний одной (верхней) зоны • собственные функции • гармонического осциллятора • магнитная длина
Эволюция релятивистского волнового пакета в магнитном поле:формирование регулярных структур (коллапс и возрождение). Подобные структуры – это чисто квантовые объекты, не имеющие классическиханалогов при любом n>>1
Основные этапы эволюции:в моменты пики излучения следуют вдвое, втрое, вчетверо и т.д. чаще, чем на начальномэтапе.
Коллапс и возрождение электронных волновых пакетов в графене, находящемся в магнитном поле Расчет временной зависимости электронной плотности
Энергетический спектр в монослойном графене
Энергетический спектр графена в магнитном поле. Собственные функции и собственные значения • собственные функции • гармонического осциллятора • в магнитном поле • собственные функции • гармонического осциллятора • в магнитном поле
Начальный волновой пакет, составленный из состояний верхней зоны, в монослойном графене
Осцилляции средней скорости Vx в монослойном графене
Этапы эволюции волнового пакета, составленного из состояний верхней зоны, в монослойном графене: формирование регулярных структур (коллапс и возрождение). Подобные структуры – это чисто квантовые объекты, не имеющие классическиханалогов при любом n>>1
Эволюция гауссовского волнового пакета в однозонной и двухзонной моделях спектра прималых временах
Вывод Таким образом, в рассмотренной задаче состояния «живой» и «мертвый» шредингеровский кот (квантовая суперпозиция различных мезоскопических состояний) представлены векторами в гильбертовом пространстве. Пакеты, постороенные из мезоскопических квантовых состояний с квантовыми числами n>>1,периодически коллапсируют и возрождаются.
Коллапс и возрождение электронных волновых пакетов в модели Рашбы Расчет временной зависимости электронной плотности
Этапы расчета эволюции волнового пакета в электронном газе со спин-орбитальным взаимодействием Рашбы Исходный гамильтонианв калибровке Собственные функции и собственные значения энергии Форма исходного волнового пакета
Матричная электронная функция Грина в модели Рашбы
Этапы расчета эволюции волнового пакета в электронном газе со спин-орбитальным взаимодействием Рашбы Средние координаты центра пакета Х(t)иY(t)
Волновой пакет в начальный момент времени
Коллапс и возрождение волновых пакетов.Осцилляции среднего циклотронного радиуса R(t) при больших временах
Эволюция циклотронного радиуса при сравнительно малых временах
Форма пакета к моменту TDЭлектронная плотность вероятности распределена по всей циклотронной орбите
Электромагнитное мультипольное излучение волновых пакетов
Механизм коллапса и восстановления Функции <x(t)> и <Vx(t)> состоят из набора осциллирующих слагаемых с близкими частотами.Первоначально эти слагаемые находятся в фазе и весь пакет испытывает осцилляции. Спустя время TDпроисходит «расстройка» и пакет расплывается. В момент TRфазы отдельных слагаемых совпадают, пакет восстанавливает свою форму и осцилляции возобновляются. В моменты t=p/qTR, где p и q взаимно простые числа, восстанавливаются фазы у отдельных групп слагаемых и при этом пакет состоит из нескольких частей. Это т.н. fractional revivals.
Об экспериментальном наблюдении эффектов коллапса и возрождения волновых пакетовв ридберговском атоме (калий) J.A. Yeazell et al., Observation of the Сollapse and Revival of a Ridberg Elrctronic Wave Packet, PRL 64, 2007 (1990)
M.J.J. Vrakking et al., Observation of fractional revivals of a moleqular wave packet, Phys. Rev. A,54,R37 (1990) Об экспериментальном наблюдении эффектов коллапса и возрождения волновых пакетов в молекулеBr2
Об экспериментальном наблюдении эффектов коллапса и возрождения волновых пакетов C. Monroe, A Schrodinger Cat Superposition States of an Atom / C. Monroe, D. Meekhof, B. King, D. Wineland/ Science 272, 1131 (1996).
Литература [1] E. Schrodinger, Naturwissenschaften 23, 807812(1935), 23,8238281935) , 23, 844849 (1935). [2] C. Monroe, A Schrodinger Cat Superposition States of an Atom / C. Monroe, D. Meekhof, B. King, D. Wineland/ Science 272, 1131 (1996). [3] M. Brune et al., Observing the progressive Dechogerence of the “Meter” in a Quantum Measurement, Phys. Rev. Lett. 77, 4887 (1996). [4] A. Bermudes, M.A. Martin-Delgado, and R. Solano /, Mesoscopic Superposition States in Relativistic Landau Levels, Phys. Rev..Lett. 99, 123602 (2007); [5] A. N. Castro Neto, The electronic properties of graphene / A. H. Castro Neto, F.Guines, N.M.R. Peres, K.S. Novoselov, and A.K. Geim /, Rev. Mod. Phys. (2008). [6] E. T. Jaynes, and F.W. Cummings, Proc. IEEE 51, 89 (1963).
Литература (продолжение) [7] Romera E. Revaivals, classical periodicity, and zitterbewegung of electron currents in monolayer grapheme / E. Romera and F. de los Santos. Phys. Rev. B 89 , 165416 (2009). [8] J.J. Torres and E. Romera Wave packet revivals in a graphene quantum dot in a perpendicular magnetic field, Phys. Rev. B 82, 155419 (2010). [9 ]Z. Dacic Gaeta and C. R. Stroud Jr.Classical and quantum-mechanical dynamics of a quasiclassical state of the hydrogen atom. Phys. Rev. A 42, 6308 (1990). [10] J. Parker, and C. R. Straud , Cocherence and Decay of Ridberg Wave Packets, PRL 56, 716(1986)
Литература (продолжение) • [11] J. A. Yeazell, M. Mallalieu, and C. R. Stroud, Jr., Observation of collapse and revival of Ridbrg electronic wave pac ket. Phys. Rev. Lett. 64, 2007 (1990). • [12] И. Ш. Авербух, Н. Ф. Перельман, Динамика волновых пакетов высоковозбужденных атомов и молекул УФН,161, 41(1991). • [13] M.J.J. Vrakking et al., Observation of fractional revivals of a moleqular wave packet, Phys. Rev. A,54,R37(1990).
Работы автора и сотрудников КТФ ННГУ [1] V. Ya. Demikhovskii, G.M Maksimova, E.V. Frolova, Wave packet dynamics in Lattinger Systems, Phys.Rev. B 81,115206(2010). [2] Maksimova G.M. Wave packet dymamics in monolayer grafene./ Maksimova G.M., Demikhovskii V.Ya. and Frolova E.V., Phys.Rev. B 78. 235321, (2008). [3] V. Ya. Demikhovskii, G.M Maksimova, A.A. Perov, E.V. Frolova, Space-time evolution of Dirac wave packets, Phys. Rev. A, 82, 052115(2010). [4] V. Ya. Demikhovskii, G.M Maksimova, E.V. Frolova, Wave packett dynamics in a two dimensional electron gas with spin-orbit coupling:Splitting and Zitterbewegung, Phys. Rev. B, 78, 115401(2008). [5] V. Ya. Demikhovskii, G.M Maksimova, A.A. Perov, A.V. Telezhnikov, The long-term cyclotron dynamics of relativistic wave packets: spontaneous collapse and revival, PRA 85, 022105 (2012).