1 / 49

Supporting Rigorous Mathematics Teaching and Learning

Supporting Rigorous Mathematics Teaching and Learning Constructing an Argument and Critiquing the Reasoning of Others. Tennessee Department of Education Elementary School Mathematics Grade 4. Mathematical Understandings.

Download Presentation

Supporting Rigorous Mathematics Teaching and Learning

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Supporting Rigorous Mathematics Teaching and Learning Constructing an Argument and Critiquing the Reasoning of Others Tennessee Department of Education Elementary School Mathematics Grade 4

  2. Mathematical Understandings [In the TIMSS report the fact] that 89% of the U.S. lessons’ content received the lowest quality rating suggests a general lack of attention among teachers to the ideas students develop. Instead, U.S. lessons tended to focus on having students do things and remember what they have done. Little emphasis was placed on having students develop robust ideas that could be generalized. The emergence of conversations about goals of instruction – understandings we intend that students develop – is an important catalyst for changing the present situation. Thompson and Saldanha (2003). Fractions and Multiplicative Reasoning. In Kilpatrick et al. (Eds.), Research companion to the principles and standards for school mathematics, Reston: NCTM. P. 96. In this module, we will analyze student reasoning to determine attributes of student responses and then we will consider how teachers can scaffold student reasoning.

  3. Session Goals Participants will learn about: • elements of Mathematical Practice Standard 3; • students’ mathematical reasoning that is clear, faulty, or unclear; • teachers’ questioning focused on mathematical reasoning; and • strategies for supporting writing.

  4. Overview of Activities Participants will: • analyze a video and discuss students’ mathematical reasoning that is clear, faulty, or unclear; • analyze student work to differentiate between writing about process versus writing about mathematical reasoning; and • study strategies for supporting writing.

  5. Making Sense of Mathematical Practice Standard 3 Study Mathematical Practice Standard 3: Construct a viable argument and critique the reasoning of others,and summarize the authors’ key messages.

  6. Common Core State Standards:Mathematical Practice Standard 3 The Common Core State Standards recommend that students: • construct viable arguments and critique the reasoning of others; • use stated assumptions, definitions, and previously established results in constructing arguments; • make conjectures and build a logical progression of statements to explore the truth of their conjectures; • recognize and use counterexamples; • justify conclusions, communicate them to others, and respond to the arguments of others; • reason inductively about data, making plausible arguments that take into account the context from which the data arose; and • compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. Modified from the Common Core State Standards, 2010, p. 6-8, NGA Center/CCSSO

  7. NCTM Focal Points: Reasoning and sense making are of particular importance, but historically “reasoning” has been limited to very selected areas of the high school curriculum, and sense making is in many instances not present at all. However, an emphasis on student reasoning and sense making can help students organize their knowledge in ways that enhance the development of number sense, algebraic fluency, functional relationships, geometric reasoning, and statistical thinking. NCTM, 2008, Focus in High School Mathematics: Reasoning and Sense Making

  8. The Relationship Between Talk and Understanding We come to an understanding in the course of communicating it. That is to say, we set out by offering an understanding and that understanding takes shape as we work on it to share it. And finally we may arrive cooperatively at a joint understanding as we talk or in some other way interact with someone else(p. 115). This view is supported by Chin and Osborne‘s (2008) study. They state that when students engage socially in talk activities about shared ideas or problems, students must be given ample opportunities for formulating their own ideas about science concepts, for inferring relationships between and among these concepts, and for combining them into an increasingly more complex network of theoretical propositions. For Hand (2008), the oral language component is heavily emphasized in the social negotiated processes in which students exchange, challenge, and debate arguments in order to reach a consensus. (Chen, Ying Chih, 2011 Examining the integration of talk and writing for student knowledge construction through argumentation.)

  9. Determining Student Understanding What will you need to see and hear to know that students understand the concepts of a lesson? Watch the video. Be prepared to say what students know or do not know. Cite evidence from the lesson.

  10. Context for the Lesson The teacher is a TN Common Core Coach. She has been working on both the Mathematical Content and Mathematical Practice Standards. She is interested in gaining a better understanding of ways of encouraging classroom talk.

  11. The Pizza Task Jolla has of a pizza. Sarah has of a pizza. Maria has of a pizza. Tim’s pizza is shaded on the pizza. How much pizza is Tim’s share? Jake has of a pizza. Juan has of a pizza. • Show each of the student’s amount of pizza. • Compare the students’ amounts of pizza. Explain with words and use the >, <, or = symbols to show who has the most pizza. • Explain with words and use the >, <, or = symbols to show who has the least amount of pizza.

  12. The Pizza Task (continued) Jolla’s Pizza Tim’s Pizza Juan’s Pizza Maria’s Pizza Jake’s Pizza Sarah’s Pizza

  13. The CCSS for Mathematics: Grade 4 Common Core State Standards, 2010, p. 30, NGA Center/CCSSO

  14. The CCSS for Mathematics: Grade 4 Common Core State Standards, 2010, p. 31, NGA Center/CCSSO

  15. Essential Understandings

  16. The CCSS for Mathematical Practice Common Core State Standards, 2010, p. 6-8, NGA Center/CCSSO • Make sense of problems and persevere in solving them. • Reason abstractly and quantitatively. • Construct viable arguments and critique the reasoning of others. • Model with mathematics. • Use appropriate tools strategically. • Attend to precision. • Look for and make use of structure. • Look for and express regularity in repeated reasoning.

  17. Determining Student Understanding(Small Group Work) What did students know and what is your evidence? Where in the lesson do you need additional information to know if students understood the mathematics or the model? Cite evidence from the lesson.

  18. Determining Student Understanding(Whole Group Discussion) In what ways did students make use of the third Mathematical Practice Standard? Let’s step back now and identify ways in which student understanding shifted or changed during the lesson. Did student understanding evolve over the course of the lesson? If so, what ideas did you see changing over time? What do you think was causing the shifts?

  19. Common Core State Standards: Mathematical Practice Standard 3(Whole Group Discussion) How many of the MP3 elements did we observe and if not, what are we wondering about since this was just a short segment? The Common Core State Standards recommend that students: • construct viable arguments and critique the reasoning of others; • use stated assumptions, definitions, and previously established results in constructing arguments; • make conjectures and build a logical progression of statements to explore the truth of their conjectures; • recognize and use counterexamples; • justify conclusions, communicate them to others, and respond to the arguments of others; • reason inductively about data, making plausible arguments that take into account the context from which the data arose; and • compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. Modified from the Common Core State Standards, 2010, p. 6-8, NGA Center/CCSSO

  20. Imagine Publicly Marking Student Behavior In addition to stressing the importance of effort, the teachers were very clear about the particular ways of working in which students needed to engage. D. Cohen and Ball (2001) described ways of working that are needed for learning as learning practices. For example, the teachers would stop the students as they were working and talking to point out valuable ways in which they were working. (Boaler, (2001) How a Detracked Math Approach Promoted Respect, Responsibility and High Achievement.)

  21. Talk is NOT GOOD ENOUGHWriting is NEEDED!

  22. The Writing Process In the writing process, students begin to gather, formulate, and organize old and new knowledge, concepts, and strategies, to synthesize this information as a new structure that becomes a part of their own knowledge network. Nahrgang & Petersen, 1998 When writing, students feel empowered as learners because they learn to take charge of their learning by increasing their access to and control of their thoughts. Weissglass, Mumme, & Cronin, 1990

  23. Talk Alone is NOT GOOD ENOUGH! Several researchers have reported that students tend to process information on a surface level when they only use talk as a learning tool in the context of science education. (Hogan, 1999; Kelly, Druker, & Chen, 1998; McNeill & Pimentel, 2010) After examining all classroom discussions without writing support, they concluded that persuasive interactions only occurred regularly in one teacher’s classroom. In the other two classes, the students rarely responded to their peers by using their claims, evidence, and reasoning. Most of the time, students were simply seeking the correct answers to respond to teachers’ or peers’ questions. Current research also suggests that students have a great deal of difficulty revising ideas through argumentative discourse alone. (Berland & Reiser, 2011; D. Kuhn, Black, Keselman, & Kaplan, 2000) Writing involves understanding the processes involved in producing and evaluating thoughts rather than the processes involved in translating thoughts into language. (Galbraith, Waes, and Torrance (2007, p. 3). (Chen, Ying Chih, 2011 Examining the integration of talk and writing for student knowledge construction through argumentation.)

  24. The Importance of Writing Yore and Treagust (2006) note that writing plays an important role―to document ownership of these claims, to reveal patterns of events and arguments, and to connect and position claims within canonical science (p.296). That is, the writing undertaken as a critical role of the argumentative process requires students to build connections between the elements of the argument (question, claim, and evidence). When students write, they reflect on their thinking and come to a better understanding of what they know and what gaps remain in their knowledge (Rivard, 1994). (Chen, Ying Chih, 2011 Examining the integration of talk and writing for student knowledge construction through argumentation.)

  25. Writing Assists Teachers, TOO Writing assists the teacher in thinking about the child as learner. It is a glimpse of the child’s reality, allowing the teacher to set up new situations for children to explain and build their mathematics understanding. Weissglass, Mumme, & Cronin, 1990

  26. Analyzing Student Work • Analyze the student work. • Sort the work into two groups—work that shows mathematical reasoning and work that does not show sound mathematical reasoning. What can be learned about student thinking in each of these groups, the group showing reasoning and the group that does not show sound reasoning?

  27. Student 1

  28. Student 2

  29. Student 3

  30. Student 4

  31. Student 5

  32. Student 6

  33. Student 7

  34. Essential Understandings

  35. Common Core State Standards:Mathematical Practice Standard 3 The Common Core State Standards recommend that students: • construct viable arguments and critique the reasoning of others; • use stated assumptions, definitions, and previously established results in constructing arguments; • make conjectures and build a logical progression of statements to explore the truth of their conjectures; • recognize and use counterexamples; • justify conclusions, communicate them to others, and respond to the arguments of others; • reason inductively about data, making plausible arguments that take into account the context from which the data arose; and • compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. Modified from the Common Core State Standards, 2010, p. 6-8, NGA Center/CCSSO

  36. Two Forms of Writing Consider the forms of writing below. What is the purpose of each form of writing? How do they differ from each other? • Writing about your problem-solving process/steps when solving a problem • Writing about the meaning of a mathematical concept/idea or relationships

  37. A Balance: Writing About Process Versus Writing About Reasoning Students and groups who seemed preoccupied with “doing”typically did not do well compared with their peers. Beneficial considerations tended to be conceptual in nature, focusing on thinking about ways to think about the situations (e.g., relationships among “givens”or interpretations of “givens”or “goals”rather than ways to get from “givens”to “goals”). This conceptual versus procedural distinction was especially important during the early stages of solution attempts when students’ conceptual models were more unstable. Lesh& Zawojewski, 1983

  38. Strategies for Supporting Writing

  39. Strategies for Supporting Writing How might use of these processes or strategies assist students in writing about mathematics? Record your responses on the recording sheet in your participant handout. Reflect on the potential benefit of using strategies to support writing. • Make Time for the Think-Talk-Reflect-Write Process • The Use of Multiple Representations • Construct a Concept Web with Students • Co-Construct Criteria for Quality Math Work • Engage Students in Doing Quick Writes • Encourage Pattern Finding and Formulating and Testing Conjectures

  40. 1. Make Time for the Think-Talk-Reflect-Write Process

  41. Pictures Manipulative Models Written Symbols Real-world Situations Oral & Written Language 2. Encourage the Use of Multiple Representations of Mathematical Ideas Modified from Van De Walle, 2004, p. 30

  42. 3. Construct a Concept Web with Students • Analyze the concept web. Students developed the concept web with the teacher over the course of several months. • How might developing and referencing a concept web help students when they are asked to write about mathematical ideas?

  43. 3. Construct a Concept Web with Students (continued)

  44. 4. Co-Construct Criteria for Quality Math Work: 4thGrade Students worked to solve high-level tasks for several weeks. The teacher asked assessing and advancing questions daily. Throughout the week, the teacher pressed students to do quality work. After several days of work, the teacher showed the students a quality piece of work, told them that the work was “quality work,” and asked them to identify what the characteristics of the work were that made it quality work. Together, they generated this list of criteria.

  45. 5. Engage Students in Doing Quick Writes A Quick Write is a narrow prompt given to students after they have studied a concept and should have gained some understanding of the concept. Some types of quick writes might include: • compare concepts; • use a strategy or compare strategies; • reflect on a misconception; and • write about a generalization.

  46. Brainstorming Quick Writes: What are some Quick Writes that you can ask students to respond to for your focus concept?

  47. 6. Encourage Pattern Finding and Formulating and Testing Conjectures How might students benefit from having their conjectures recorded? What message are you sending when you honor and record students’ conjectures? Why should we make it possible for students to investigate their conjectures?

  48. Checking In: Construct Viable Arguments and Critique the Reasoning of Others How many of the MP3 elements did we observe and if not, what are we wondering about since this was just a short segment? The Common Core State Standards recommend that students: • construct viable arguments and critique the reasoning of others; • use stated assumptions, definitions, and previously established results in constructing arguments; • make conjectures and build a logical progression of statements to explore the truth of their conjectures; • recognize and use counterexamples; • justify conclusions, communicate them to others, and respond to the arguments of others; • reason inductively about data, making plausible arguments that take into account the context from which the data arose; and • compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. Modified from the Common Core State Standards, 2010, p. 6-8, NGA Center/CCSSO

More Related