200 likes | 266 Views
Relaxation of intracenter excitations in monoisotopic 28 Si:P.
E N D
Relaxation of intracenter excitations in monoisotopic 28Si:P S.G. Pavlov1, S.A. Lynch2, P.T. Greenland2, K. Litvinenko3, R. Eichholz1, V.N. Shastin4, B. Redlich5, A.F.G. van der Meer5, N.V. Abrosimov6, H. Riemann6, H.-J. Pohl7, G. Aeppli2, B.N. Murdin3, C.R. Pidgeon8, and H.-W. Hübers1,9 1) Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany 2) London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, England 3) Advanced Technology Institute, University of Surrey, Guildford, England 4) Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia 5) FOM-Institute for Plasma Physics, Nieuwegein, The Netherlands 6) Leibniz Institute of Crystal Growth, Berlin, Germany 7) VITCON Projectconsult GmbH, Jena, Germany 8) Department of Physics, Heriot-Watt University Riccarton, Edinburgh, Scotland 9) Institut für Optik und Atomare Physik, Technische Universität Berlin, Germany
Intracenter electronic relaxation in silicon: basics Cascade capture of electrons in solids M. Lax, Phys. Rev. 119, 1502,.1960 Recombination of electrons and donors in n-type germanium G. Ascarelli and S. Rodriguez Phys. Rev. 124, 1321, 1961 Evidence of noncascade intracenter electron relaxation in shallow donor centers in silicon, S.G. Pavlov, H.-W. Hübers, P.M. Haas, J.N. Hovenier, T.O. Klaassen, R.Kh. Zhukavin, V.N. Shastin, D.A. Carder and B. Redlich, Phys. Rev. B. 78, 165201, 2008. Релаксация возбужденных состояний доноров с излучением междолинных фононов- В.В. Цыпленков, Е.В. Демидов, К.А. Ковалевский, В.Н.Шастин, ФТП 42, 1032, 2008.
Relaxation of individual impurity states in silicon: experiments T*=
Relaxation of individual impurity states in natural Si:P: experiments Silicon as a model ion trap: Time domain measurements of donor Rydberg states, N.Q. Vinh, P.T. Greenland, K. Litvinenko, B. Redlich, A.F.G. van der Meer, S.A. Lynch, M. Warner, A.M. Stoneham, G. Aeppli, D.J. Paul, C.R. Pidgeon and B.N. Murdin, PNAS 105, 10649, 2008.
Natural linewidth of impurity transitions in 28Si:P: HR absorption spectroscopy Shallow impurity absorption spectroscopy in isotopically enriched silicon, M. Steger, A. Yang, D. Karaiskaj, M.L.W. Thewalt, E.E. Haller, J.W. Ager, III, M. Cardona, H. Riemann, N.V. Abrosimov, A.V. Gusev, A.D. Bulanov, A.K. Kaliteevskii, O.N. Godisov, P. Becker, and H.-J. Pohl, Phys. Rev. B. 79, 205210, 2009. Natural linewidth of atomic transitions 5.3ps / FWHM (cm-1)
Isotopically enriched 28Si:P. • Avogadro Project • redefine the kilogram based on the lattice constant and density of 28Si • enrichment: 99.99459% • [P] ~ 51011 cm-3 41015 cm-3 • [B] ~ 51013 cm-3 • dislocation free
Relaxation of individual impurity states in silicon: variation of experimental results
Relaxation of individual impurity states in silicon: variation of experimental results
Reason of negative contribution in pump-probe FEL1 (6ps) = 54.4 GHz FEL2 (10ps) = 31.5 GHz Si:P (FTS) = 28.2 GHz
Different contributions in pump-probe Absorption on 2p0c.b. transitions delivers negative contribution in probe transmission through sample - - FEL probe + FELIX pump laser
Two-exponential decay as step-like decay of the 2p0 state small relative absorbance: c.b. Pumped-probed state FEL probe + if two-step decay dominates: where decay rates between states are: w21: 2p0 1s(E,T2) w10: 1s(E,T2) 1s(A1) FELIX pump laser two-exp decay fit must be used ND(t)=N1s(A1)(t)+N2p0(t)+N1s(E)+N1s(T2)
Optically pumped donor intracenter silicon lasers Phys. Rev. Lett. 84, 5220 (2000) Appl. Phys. Lett. 80, 4717 (2002) J. Appl. Phys. 92, 5632 (2002) Appl. Phys. Lett. 84, 3600 (2004)
Conclusions: • Decay of the 2p0 state in Si:P is very likely two-step process • Decay time on the first step (2p01s(E), 1s(T2)) is about 200 ps for 28Si:P and about 150 ps for Si:P • Decay time on the first step (1s(E), 1s(T2) 1s(A1) ) is about 50 ps for 28Si:P and about 50 ps for Si:P • experiments: different doping (done, not yet analyzed) • two-color time-resolved experiments • modeling of relaxation