1 / 31

Examining S bounds states with FINUDA

Examining S bounds states with FINUDA. FINUDA COLLABORATION Stefano Piano. S - Hypernuclei . 4 S He. Present knowledge:  Only one S -hyp. bound state found: 4 S He ( S  S 0 ,S + )  Pratically no data in heavier systems Possible explanations :

Download Presentation

Examining S bounds states with FINUDA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Examining S bounds stateswith FINUDA FINUDA COLLABORATION Stefano Piano

  2. S-Hypernuclei 4SHe Present knowledge:  Only one S-hyp. bound state found: 4SHe (SS0,S+)  Pratically no data in heavier systems Possible explanations : a) [S+A] SB: previous expt.’s were unable to detect SB b) SNLN previous expt.’s were unable to discriminate S/N c) no SB bound system nothing to be seen ! FINUDA can detect the formation and decay of S-hypernuclei in the (K-stop, ) reaction due to itstracking capabilities  A S-hyp. forms when a S substitutes a N into a nucleus (S=-1) R.S. Hayano et al., Phys. Lett. B 231 (1989) 355 T. Nagae et al., Phys. Rev. Lett. 80 (1998) 1605

  3. How to “dig-out” S-hypernuclei with FINUDA S-hyp simulated event Reaction steps K-stop+ A SB + prompt S + N  + N

  4. Silicon Vertex Detector PID Outer microstrip layer Inner microstrip layer

  5. +prompt + +prompt x - +prompt x - p +prompt x p +prompt x - x p p+prompt in coincidence with daughter particles K-stopped+ 12C 12S-Be + +prompt S + p  + n p + -

  6. K-stopped+ 12C 12S-Be + +prompt S + p  + n  p + - … due to 12S-Be ??? predicted G ~ 4-7 MeV(*) due to proton contamination (*) E.Oset et al, Phys. Rep. 188(1990)79

  7. Topology of a S-hyp event for 12C K- + 12C  12S-Be + +prompt 12S-Be  12Be + L + n L  - + p p ML [ p-] = 1114 MeV/c2 • K- vertex: • + 176 MeV/c • p 500 MeV/c • - 158 MeV/c +prompt -

  8. Topology of a S-hyp event for 12C Central region p p +prompt +prompt - L vertex - 12S-Be vertex Side view Front view

  9. K-stopped+ 12C 12S-Be + +prompt S + p  + n  p + -  [ - p] invariant mass distribution; (+, -,p) coincidence L needs to be improved !!! Entries / 4 MeV/c2 Invariant mass, MeV/c2

  10. Topology of a S-hyp event for 6Li p - + +prompt L p - L vertex +prompt + Central region front view

  11. Topology of a S-hyp event for 51V 49S-Sc vertex L vertex p + - +prompt - p Central region side view

  12. Summary • FINUDA/DAFNE a unique facility for S-hyp studies • Initial analysis yields positive expectations for bound SB beyond A=4 • Improve data analysis: • Better pattern recognition  increases a statistics: x3 • Better definition of   improves L (conversion reaction) invariant mass • Further improve p+to pPID • Strategy for future analysis: • tune-up analysis for the “reference nucleus” 12C • go for 6,7Li, 27Al and 51V • have a glance at S0/+-hyps • get theorists involved

  13. A first glance at 6Li

  14. p - + + Topology of a S-hyp event for 6Li • K- vertex: • + 151 MeV/c • p 271 MeV/c • - 127 MeV/c • K+ vertex: • + 236 MeV/c (p + -)Inv. Mass = 1116 MeV/c2 K- + 6Li  (5He+S-) + + (5He+S-)  3H + L + n +n

  15. Topology of a S-hyp event for 6Li p - + + L p - K- F K+ + +

  16. Topology of a S-hyp event for 6Li p - p L L - L K- + F K+ + + +

  17. 27Al target: typical event • K- vertex: • + 149 MeV/c • p 156 MeV/c • - 142 MeV/c p - (p + -)Inv. Mass = 1117 MeV/c2 + K- + 27Al (26Mg+S-) + + (26Mg+S-)25Na + L + n

  18. 27Al target: typical event K+ F K- L + p L - + p -

  19. 51V target: typical event • K- vertex: • + 163 MeV/c • p 248 MeV/c • - 124 MeV/c (p + -)Inv. Mass = 1110 MeV/c2 p + - K- + 51V  (50Ti+S-) + + (50Ti+S-)  49Sc + L + n

  20. 51V target: typical event K+ F K- L + L + - p p -

  21. Sigma Hypernuclei in FINUDA Kstopped+ A  B + prompt  + N   + N

  22. Monte Carlo simulations of S-hypernuclei 2p E.Oset, A.Ramos, I.Vidana, private communication • binding energies and width are • taken from: E.Oset et al., Phys. Rept. 188 (1990) 79 • bound nucleons have Fermi mom. • mom. distr. prob. dens. funct. final state particles tested for Pauli kinematics of f.s.p. feeds GEANT3 (geom., en. loss, trajectories) 1s tot

  23. Kstop + 12C  tot 2p 1s tot tot 2p 2p 1s 1s

  24. TOT K- p+ - K- p-+ -  n - K- n0 - p - K- n- K- (NN)- N -  n - Monte Carlo simulations of background reactions: p--spectra

  25. +,0-hyp region Monte Carlo simulations of background reactions: p--spectra

  26. --hyp region TOT K- p-+ K- p+- +  n + K- (NN)+ N +  n + Monte Carlo simulations of background reactions: p+-spectra

  27. Starting-line - Hypernuclei at 1.1 T  • trigger: + •  17% of K+K- • tagging with: • +prompt, -, p • two vertices • : invariant • mass

  28. Finishing-line - Hypernuclei at 0.6 T  • trigger: +prompt • 56% of 12-Be • improved tagging • better track and • vertex fitting

  29. - Hypernuclei in FINUDA at 0.6 Tvertex region

  30. +/o Hypernuclei in FINUDA • trigger: -prompt • tagging with: • -prompt, -, p • two vertices • : invariant • mass • background: o &  • quasi-free reactions

More Related