1 / 32

A Reliable Transmission Protocol for ZigBee-Based Wireless Patient Monitoring

A Reliable Transmission Protocol for ZigBee-Based Wireless Patient Monitoring. IEEE JOURNALS Volume: 16 , Issue:1 Shyr-Kuen Chen, Tsair Kao, Chia-Tai Chan, Chih-Ning Huang, Chih-Yen Chiang, Chin-Yu Lai, Tse-Hua Tung, and Pi-Chung Wang. Presenter: Yu-Ming Chen

harper
Download Presentation

A Reliable Transmission Protocol for ZigBee-Based Wireless Patient Monitoring

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Reliable Transmission Protocol for ZigBee-Based Wireless Patient Monitoring IEEE JOURNALS Volume: 16 , Issue:1 Shyr-Kuen Chen, Tsair Kao, Chia-Tai Chan, Chih-Ning Huang, Chih-Yen Chiang, Chin-Yu Lai, Tse-Hua Tung, and Pi-Chung Wang Presenter: Yu-Ming Chen Adviser: Hung-Chi Yang

  2. Outline • Introduction • Related Work • Reliable Transmission Protocol • Fall Monitoring system • Simulation and implementation Results • Conclusion

  3. INTRODUCTION • The global elderly population is fast growing and will outnumber the population of children in near future. • The changes brought about by the aging society include an increasing demand for caretaking; thus, patient monitoring systems are gaining their importance in reducing the need for human resources.

  4. INTRODUCTION • In this paper, we present a reliable transmission protocol based on anycast routing for wireless patient monitoring.

  5. INTRODUCTION • In this paper, we present a reliable protocol of packet forwarding that transmits emergency messages with vital signs on a multihop ZigBee network.

  6. INTRODUCTION • We deploy multiple data sinks in a ZigBee network. • Our protocol uses anycast to find the nearest available data sink. • When the path to the original data sink fails, our protocol automatically selects another data sink as destination.

  7. INTRODUCTION • As compared with multicast/broadcast approaches, our protocol significantly reduces the traffic overhead while maintaining the reliability at the same level.

  8. INTRODUCTION • We implement a ZigBee device for fall monitoring, which integrates fall detection indoor positioning, and ECG monitoring. • When the triaxial accelerometer of our device detects a fall, the current position of the patient is generated and transmitted to a data sink through a ZigBee network.

  9. INTRODUCTION • In order to clarify the situation of the fallen patient, 4-s ECG signals are transmitted along with the emergency message.

  10. RELATED WORK • A Communication Modes Data transmission can be categorized into four modes, namely unicast, multicast, broadcast, and anycast.

  11. RELATED WORK B. Wireless Patient Monitoring System This framework uses four routing schemes(multicast, reliable multicast, broadcast, and reliable broadcast)

  12. RELATED WORK B. Wireless Patient Monitoring System Using IEEE 802.15.4 standard for ECG, the maximum payload size only allow up to 118 samples per frame bringing the accumulation delay to 236ms.

  13. 802.15.4

  14. RELATED WORK B. Wireless Patient Monitoring System The minimum data sampling rate of 1 sample per frame result in an accumulated delay of 2 ms.

  15. RELATED WORK • B. Wireless Patient Monitoring System Previous schemes tend to use broadcast or multicast schemes to achieve message delivery in a multihop wireless network.

  16. RELATED WORK • B. Wireless Patient Monitoring System Although the number of transmission hops and traffic overhead can be reduced by using excess transmission power, the collision domain is also enlarged to severely degrade the transmission efficiency of MAC layer.

  17. RELATED WORK • B. Wireless Patient Monitoring System We combine anycast with a reliable transmission mechanism to improve the efficiency of message transmission in this paper. Since our scheme does not rely on in creasing transmission power, the power efficiency of our scheme can be improved as well.

  18. RELIABLE TRANSMISSION PROTOCOL • Sensor Node • Router Node • Data receiver

  19. RELIABLE TRANSMISSION PROTOCOL • A. Sensor Node

  20. RELIABLE TRANSMISSION PROTOCOL • B. Router Node

  21. RELIABLE TRANSMISSION PROTOCOL • C. Data Receiver

  22. FALL MONITORING SYSTEM • SVM: Sum Vector Magnitude of acceleration

  23. SIMULATION AND IMPLEMENTATION RESULTS • A. Simulation Results

  24. SIMULATION AND IMPLEMENTATION RESULTS • B. Implementation Results

  25. CONCLUSION • This paper presents a reliable anycast routing protocol for ZigBee-based wireless patient monitoring. • A broken path can be recovered in a short latency. • We demonstrate that our scheme can improve the feasibility of wireless patient monitoring systems.

  26. THANK YOU

More Related