1 / 18

Developing Geometric Thinking: Van Hiele’s Levels

Developing Geometric Thinking: Van Hiele’s Levels. Mara Alagic. Van Hiele: Levels of Geometric Thinking. Precognition Level 0: Visualization/Recognition Level 1: Analysis/Descriptive Level 2: Informal Deduction Level 3: Deduction Level 4: Rigor.

Download Presentation

Developing Geometric Thinking: Van Hiele’s Levels

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Developing Geometric Thinking: Van Hiele’s Levels Mara Alagic

  2. Van Hiele: Levels of Geometric Thinking • Precognition • Level 0: Visualization/Recognition • Level 1: Analysis/Descriptive • Level 2: Informal Deduction • Level 3: Deduction • Level 4: Rigor Mara Alagic

  3. Van Hiele: Levels of Geometric Thinking • Precognition • Level 0: Visualization/Recognition • Level 1: Analysis/Descriptive • Level 2: Informal Deduction • Level 3:Deduction • Level 4: Rigor Mara Alagic

  4. Visualization/Recognition • The student identifies, names compares and operates on geometric figures according to their appearance • For example, students recognize rectangles by its form but, a rectangle seems different to them then a square • At this level rhombus is not recognized as a parallelogram Mara Alagic

  5. Van Hiele: Levels of Geometric Thinking • Precognition • Level 0: Visualization/Recognition • Level 1: Analysis/Descriptive • Level 2: Informal Deduction • Level 3:Deduction • Level 4: Rigor Mara Alagic

  6. Analysis/Descriptive • Students analyze figures in terms of their components and relationships between components; discover properties/rules of a class of shapes empirically by • folding • measuring • using a grid or a diagram, ... • They are not yet capable of differentiating these properties into definitions & propositions • Logical relations are not yet fit-study object Mara Alagic

  7. Analysis/Descriptive: Example If a student knows that the • diagonals of a rhomb are perpendicular, she must be able to conclude that, • if two equal circles have two points in common, the segment joining these two points is perpendicular to the segment joining centers of the circles Mara Alagic

  8. Van Hiele: Levels of Geometric Thinking • Precognition • Level 0: Visualization/Recognition • Level 1: Analysis/Descriptive • Level 2: Informal Deduction • Level 3:Deduction • Level 4: Rigor Mara Alagic

  9. Informal Deduction • Students logically interrelate previously discovered properties/rules by giving or following informal arguments • The intrinsic meaning of deduction is not understood by the student • The properties are ordered - deduced from one another Mara Alagic

  10. Informal Deduction: Examples • A square is a rectangle because it has all the properties of a rectangle • Students can conclude the equality of angles from the parallelism of lines: In a quadrilateral, opposite sides being parallel necessitates opposite angles being equal Mara Alagic

  11. Van Hiele: Levels of Geometric Thinking • Precognition • Level 0: Visualization/Recognition • Level 1: Analysis/Descriptive • Level 2: Informal Deduction • Level 3:Deduction • Level 4: Rigor Mara Alagic

  12. Deduction (1) • Students prove theorems deductively and establish interrelationships among networks of theorems in the Euclidean geometry • Thinking is concerned with the meaning of deduction, with the converse of a theorem, with axioms, and with necessary and sufficient conditions Mara Alagic

  13. Deduction (2) • Students seek to prove facts inductively • It would be possible to develop an axiomatic system of geometry, but the axiomatics themselves belong to the next (fourth) level Mara Alagic

  14. Van Hiele: Levels of Geometric Thinking • Precognition • Level 0: Visualization/Recognition • Level 1: Analysis/Descriptive • Level 2: Informal Deduction • Level 3:Deduction • Level 4: Rigor Mara Alagic

  15. Rigor • Students establish theorems in different postulational systems and analyze/compare these systems • Figures are defined only by symbols bound by relations • A comparative study of the various deductive systems can be accomplished • Students have acquired a scientific insight into geometry Mara Alagic

  16. Levels: Differences in objects of thought • geometric figures • classes of figures & properties of these classes • students act upon properties, yielding logical orderings of these properties • operating on these ordering relations • foundations (axiomatic) of ordering relations Mara Alagic

  17. Major Characteristics of the Levels • the levels are sequential • each level has its own language, set of symbols, and network of relations • what is implicit at one level becomes explicit at the next level • material taught to students above their level is subject to reduction of level • progress from one level to the next is more dependant on instructional experience than on age or maturation • one goes through various “phases” in proceeding from one level to the next Mara Alagic

  18. References • Van Hiele, P. M. (1959). Development and learning process. Acta Paedogogica Ultrajectina (pp. 1-31). Groningen: J. B. Wolters.Van Hiele, P. M. & Van Hiele-Geldof, D. (1958). • A method of initiation into geometry at secondary schools. In H. Freudenthal (Ed.). Report on methods of initiation into geometry (pp.67-80). Groningen: J. B. Wolters. • Fuys, D., Geddes, D., & Tischler, R. (1988). The van Hiele model of Thinking in Geometry Among Adolescents. JRME Monograph Number 3. Mara Alagic

More Related