1 / 77

Energy Management: 2013/14

Energy Management: 2013/14. Class # 2 Portuguese Energetic Balance Prof. Tânia Sousa taniasousa@ist.utl.pt. The Portuguese Energetic Balance. What is the Portuguese Energetic Balance?. The Portuguese Energetic Balance.

haru
Download Presentation

Energy Management: 2013/14

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Energy Management: 2013/14 Class # 2 Portuguese Energetic Balance Prof. Tânia Sousa taniasousa@ist.utl.pt

  2. The Portuguese Energetic Balance • Whatisthe Portuguese Energetic Balance?

  3. The Portuguese Energetic Balance • The Portuguese Energetic Balance, PEB, isanenergyaccountingframework to describetheannualenergyflows in Portugal for each fuel/energy vector • In Portugal the EB iselaboratedbythe Direcção Geral de Energia e Geologia (DGEG). • Data is (1) obtainnedwithsurveys to theconsumersand (2) providedbythesuppliersoftheenergeticmarket • PEB’s are available in excel files from 1990 in DGEG: http://www.dgeg.pt/ • Portuguese andothercountries’sEB’s are availablefrom IEA from 1960 or 1970 onwards

  4. The Portuguese Energetic Balance • Whattypeofissuescan anenergetic balance helpyouwith?

  5. The Portuguese Energetic Balance • Whattypeofissues can anenergetic balance helpyouwith? • Energy supply mix • Share of renewable energies in supply • Self-reliance in energysupply • Refiningefficiency • Electricityproductionefficiency • Per capita use of final energy • Energy intensity

  6. EnergyAccounting Framework: Production • Energyflowsconsidered for each individual fuel orenergytype

  7. EnergyAccounting Framework: Transformation • Energyflowsconsidered for each individual fuel orenergytype

  8. EnergyAccounting Framework: Final Use • Energyflowsconsidered for each individual fuel orenergytype

  9. EnergyAccounting Framework: Units • Theunitused in theEnergetic Balance is TOE (Ton ofoilequivalent) • 1 TOE = 41.87 GJ • ConversionFactors: • Natural Gas: • 45.1 GJ/ t = 1.077 toe/t • Heatreleasedonburning (LHV, HHV) • Electricity: • 1 GWh = 86 toe • Directheatequivalent CH4, N2 & O2 CO2, H2O, N2

  10. The Portuguese Energetic Balance • Anenergetic Balance is a matrix: • Eachtypeoffuel/energy vector isconsideredalongthecolumns • Eachrow captures theflowofenergy

  11. The Portuguese Energetic Balance • Anenergetic Balance is a matrix: • Eachtypeof fuel/energy vector isconsideredalongthecolumns • Eachrow captures theflowofenergy

  12. EnergyAccounting Framework: Production • Energyflowsconsidered for each individual fuel orenergytype

  13. EnergyAccounting Framework: Production • Mainflowsconsidered: • Imports (expanddomesticsupply) • DomesticProduction • Change in stocks (anincrease (decrease) in stocks represents a decrease (increase) in domesticsupply) • Exports (decreasedomesticsupply) • Bunkers (InternationalAviation & Internacional Maritimetransport) • How do youobtainconsumptionofprimaryenergy? Example: Cover fluctuations in supplyanddemand

  14. EnergyAccounting Framework: Production • Mainflowsconsidered: • Imports (expanddomesticsupply) • DomesticProduction • Change in stocks (anincrease (decrease) in stocks represents a decrease (increase) in domesticsupply) • Exports (decreasedomesticsupply) • Bunkers (InternationalAviation & Internacional Maritimetransport) Example:

  15. EnergyAccounting Framework: Production • Biggestenergyimportsandexports?... • Whattypesoffuels/energyvectors do weproduce in Portugal? • Highestconsumptionofprimaryenergy?

  16. EnergyAccounting Framework: Production • In 2010 • Thebiggestenergyimports (andexports) are oil • Themostrelevantdomesticproductioniselectricityandbiomass • Thehighetsconsumptionofprimaryenergyisalsooil

  17. EnergyAccounting Framework: Production • Compare theimportsofnat. gas in 2008 withthemaximumcapacityofimporting(Campo-Maior -> 122.4 GWh/dayand Sines -> 192,8GWh/dia) Liquefaction of natural gas T=-162ºC Decrease in volume: 1/600

  18. EnergyAccounting Framework: Production • Compare theimportsofnat. gas in 2008 withthemaximumcapacityofimporting(Campo-Maior -> 122.4 GWh/dayand Sines -> 192,8 GWh/dia) • 4163167 toe /365 days= 48409 GWh /365 days= 133 GWh /day Storing Pressure: 180 bar Carriço storagecapacity (2155 GWh -> 16 dias)

  19. EnergyAccounting Framework: Production • Whatistheprimaryenergysupply for jets in 2008?

  20. EnergyAccounting Framework: Production • Whatistheprimaryenergysupply for jets in 2008? • Otherfuelshad a negative primaryenergysupply in 2008: fueloil, naphtha, gasoline, lubricant, paraffin, solvent, propylene • Whatisthemeaning?

  21. The Portuguese Energetic Balance • Anenergetic Balance is a matrix: • Eachtypeof fuel/energy vector isconsideredalongthecolumns • Eachrow captures theflowofenergy

  22. EnergyAccounting Framework: Transformation • Summarizingtheenergyflowconsidered for each individual fuel orenergytype

  23. EnergyAccounting Framework: Transformation • Mainflowsconsidered in theenergytransformation sector: • Transformationofprimaryintosecondaryenergies (consumptionappears (+), productionappears(-)) • Energysector’sown use (e.genergyused for pumping, iluminationandheating) includingtransmissionanddistributionlosses • Net supplyavailable • Statisticaldifference (betweenavailablefor final consumption& final consumption) • Consumption as raw material • How do youobtainenergyavailable for final consumption? Example: EnergeticOilProductsthat are alsoconsumed as raw material: naphta

  24. EnergyAccounting Framework: Transformation • Mainflowsconsidered in theenergytransformation sector: • Transformationofprimaryintosecondaryenergies(consumptionappears (+), productionappears (-)) • Energysector’sown use (e.genergyused for pumping, iluminationandheating) includingtransmissionanddistributionlosses • Net supplyavailable • Statisticaldifference (betweenavailablefor final consumption& final consumption) • How do youobtainenergyavailable for final consumption? Example:

  25. EnergyAccounting Framework: Transformation • Secondaryenergiesconsidered: Example: Whatisthemeaningofthesenumbers? Coalproducts Oilproducts (output fromrefinaries) Gases (producedfromnaphtha in thePetrochemicalindustry) Heat & Electricity

  26. EnergyAccounting Framework: Transformation • Secondaryenergiesconsidered: Example: Natural Gasused to produceElectricity Coalproducts Oilproducts (output fromrefinaries) Natural Gasused to produceElectricity & Heat Gases (producedfromnaphtha in thePetrochemicalindustry) Heat & Electricity

  27. EnergyAccounting Framework: Transformation • Secondaryenergiesconsidered: • Cogenerationofthe non-energetic sector isincludedhere Example: Central Barreiro (fechou fim 2009)

  28. EnergyAccounting Framework: Transformation • Energy Sector ownconsumption? Example:

  29. EnergyAccounting Framework: Transformation • Energy Sector ownconsumption: Example: Coal Sector OilEnergy Sector Natural GasorElectricEnergySectors ElectricEnergy Sector

  30. EnergyAccounting Framework: Transformation • Energy Sector ownconsumption: Example: Coal Sector Whatisthemeaningofthisterm? OilEnergy Sector Natural GasorElectricEnergySectors ElectricEnergy Sector

  31. EnergyAccounting Framework: Transformation • Energy Sector ownconsumption: Example: Coal Sector Natural Gaslost in thetransportation & distribution OilEnergy Sector Natural GasorElectricEnergySectors ElectricEnergy Sector

  32. EnergyAccounting Framework: Transformation • Whatistheenergeticconsumptionoftheelectric sector in TOE?

  33. EnergyAccounting Framework: Transformation • Whatistheenergeticconsumptionoftheelectric sector in TOE? • Itisequal to = 55 + 136439 + 54954 + 362576

  34. Conversion Processes (Fossil Fuels) • Oil

  35. Conversion Processes (Fossil Fuels) • Oil • Electricity (Setúbal) • Electricity & Heat (Cogeneration) • Transportation Fuels (Refineries in Sinese Matosinhos) • Non-energetic Materials (Refineries) • Coal Examples: chemicalindustry Refinery, Sines

  36. Conversion Processes (Fossil Fuels) • Oil • Electricity (Setúbal) • Electricity & Heat (Cogeneration) • Transportation Fuels (Refineries in Sinese Matosinhos) • Non-energetic Materials (Refineries) • Coal • Electricity (Pego & Sines) • Gas Examples: chemicalindustry Refinery, Sines Coal Power Plant, Sines

  37. Conversion Processes (Fossil Fuels) • Oil • Electricity (Setúbal) • Electricity & Heat (Cogeneration) • Transportation Fuels (Refineries in Sinese Matosinhos) • Non-energetic Materials (Refineries) • Coal • Electricity (Pego & Sines) • Gas • Electricity (TapadaOuteiro, Ribatejo, Lares, Pego) • Electricity & Heat (Cogeneration) Examples: chemicalindustry Refinery, Sines Examples: paperindustry CCTG Power Plant, TapadaOuteiro Coal Power Plant, Sines

  38. Conversion Processes (Fossil Fuels) • Oil • Crude oil& intermediateproducts areconsumedto produce: • Fuels (Refineries) • Non-energetic Materials (Refineries)

  39. Conversion Processes (Fossil Fuels) • Oil • Crude oil& intermediateproducts areconsumedto produce: • Fuels (Refineries) • Non-energetic Materials (Refineries) Fueloilisproduced in therefineries

  40. Conversion Processes (Fossil Fuels) • Oil • Electricity (Setúbal) Fueloilisconsumed to produceelectricity FueloilPowerPlant, Setúbal

  41. Conversion Processes (Fossil Fuels) • Oil • Electricity (Setúbal) • Electricity & Heat (Cogeneration)

  42. Conversion Processes (Renewables) • Solar • Heat • Electricity • Moura – Amareleja 46 MW • Serpa – Hércules 11 MW • Total – 157 MW (60 MW emmicrogeração) Central Solar FotovoltaícaMoura

  43. Conversion Processes (Renewables) • Wind • Electricity • Offshore 2 MW • Microgeneration 0.6 MW • Total 4300 MW • Hydro • Electricity • Fio de Água 2244 MW • Total 5250 MW

  44. Conversion Processes (Renewables) • Geothermal • Electricity (S. Miguel – 10MW) • Biomass • Electricity • Total: 116 MW • Electricity & Heat (Cogeneration) • 459 MW Central Geotérmica S. Miguel, Açores Central ResíduosFlorestaisMortágua

  45. Conversion Processes (Renewables) Paperindustry • LicoresSulfitivos • Electricity & Heat (Cogeneration) • Biodiesel • Transportation Fuels • Biogás • Electricity (43 MW) • Electricity & Heat (Cogeneration) • Urban Waste • Electricity (77 MW) • Industrial Waste • Electricity & Heat (Cogeneration) ValorSul, Lisboa AterroSanitário com aproveitamentoBiogás, Portimão

  46. EnergyAccounting Framework: Transformation • Whatisthemeanefficiency in producingthermoelectricity? Meaning ?

  47. EnergyAccounting Framework: Transformation • Whatisthemeanefficiency in producingthermoelectricity? Thermoelectricityproducedwithcoal, oil, natural gas, biomass, urbanwasteandbiogas Coalused to produceelectricity

  48. EnergyAccounting Framework: Transformation • Whatisthemeanefficiency in producingthermoelectricity? Thermoelectricityproducedwithcoal, oil, natural gas, biomass, urbanwasteandbiogas Coalused to produceelectricity

  49. EnergyAccounting Framework: Transformation • Whatistheefficiency in producingelectricityfromurbanwaste in 2008? • ValorSul 286 GWh • Lipor 191 GWh • ValorAmbiente 53 GWh

  50. EnergyAccounting Framework: Transformation • Whatistheefficiency in producingelectricityfromurbanwaste in 2008? • ValorSul 286 GWh • Lipor 191 GWh • ValorAmbiente 53 GWh • Whatistheefficiency in producingelectricityfromcoal?

More Related