440 likes | 615 Views
-SELFE Users Trainng Course- (3) SELFE code Joseph Zhang, CMOP, OHSU. end. SELFE flow chart. All numbers are based on a most recent CORIE run using serial version 1.5k2. Compute geometry. Initialization or hot start. yes. forcings. no. 4%. Completed?. backtracking. 40%. 3%.
E N D
-SELFE Users Trainng Course-(3)SELFE codeJoseph Zhang, CMOP, OHSU
end SELFE flow chart All numbers are based on a most recent CORIE run using serial version 1.5k2 Compute geometry Initialization or hot start yes forcings no 4% Completed? backtracking 40% 3% output no Turbulence closure 6% Update levels & eqstate 1% ~10% Transport Preparation (wave cont.) 11% <1% w <1% Momentum eq. 21% solver
3 j Serial code structure (1) 1 2 • Dimensioning parameters – static allocation of memory • !... Dimensioning parameters • integer, parameter :: mnp=31000 • integer, parameter :: mne=60000 • integer, parameter :: mns=91000 • integer, parameter :: mnv=54 • ! user-defined tracer part • integer, parameter :: ntracers=0 • ! end user-defined tracer part • integer, parameter :: mntr=max(2,ntracers) • integer, parameter :: mnei=20 !neighbor • integer, parameter :: mne_kr=100 !max. # of elements used in Kriging • integer, parameter :: mnei_kr=6 !max. # of pts used in Kriging • integer, parameter :: mnope=20 !# of open bnd segements • integer, parameter :: mnond=1000 !max. # of open-bnd nodes on each segment • integer, parameter :: mnland=220 !# of land bnd segements • integer, parameter :: mnlnd=10000 !max. # of land nodes on each segment • integer, parameter :: mnbfr=15 !# of forcing freqs. • integer, parameter :: itmax=5000 !# of iteration for itpack solvers used for dimensioning • integer, parameter :: nwksp=6*mnp+4*itmax !available work space for itpack solvers • integer, parameter :: nbyte=4 • integer, parameter :: mnout=100 !max. # of output var. • integer, parameter :: mirec=1109000000 !max. record # to prevent output ~> 4GB • How to read the code • Array indices: tr_el(mnv,mne,mntr) • Loop around elements, nodes, and sides • Major blocks • read in vgrid: SZ • param.in, part I: CPP projection center for hgrid • hgrid & bnd info • Compute connectivity info • Ball of nodes • Side info; open bnd sides 1 2 3 3 2 1 1 2 3 2 y’ x’ 1
x Serial code structure (2) • Side neighborhood info for filter and hvis: geometry check and end of ipre=1 • param.in, part II: remaining parameters • Kriging cloud and inversion of matrices with LAPACK • Initialization • bottom index • cold start: i.c. for S,T & tracers; wind field; nudging field (S&T); GOTM • hotstart: read in all state variables • reset time=0 for ihot=1 • find position in all *.th, atmos. and nudging inputs • write header of outputs • initial vgrid: vertical indices; z-coord.; wet/dry; bed deformation • initial vel. @ nodes • eqstate • initialize heat exchange • Time stepping • bed deformation • bottom drag • horizontal viscosity • tidal potential • wind stress and atmos. fluxes • S,T nudging values • read in *.th; compute vel. b.c. based on discharges (except uv3D.th) • backtracking (more later) (u,v,w,S,T) @ nodes and sides • density gradients using cubic spline • turbulence closure: at nodes do j=1,ns if(idry_s(j)==1) then do k=1,nvrt su2(k,j)=0 sv2(k,j)=0 enddo !k cycle endif ! Wet sides node1=isidenode(j,1) node2=isidenode(j,2) …………………… enddo !j
Serial code structure (3) • Time stepping • continuity eq • evaluation of FE matrices • compute sparse matrix (I1-5) and impose essential b.c. • solver: CG with Jacobian pre-conditioner • momentum eq: sides • mismatch of Z layers: volume conservation • filter • vertical velocity: elements • transport eq • ELM: nodes and sides (need btrack values) • upwind &TVD: prisms (no btrack) • do_transport_tvd() • conversion to nodes for output and for eqstate (closure) • tracers • nudging and b.c. • new vgrid: wet/dry (more later) • new (u,v,w) at nodes • eqstate • calculation of fluxes and conservation check (using internal variables) • global outputs
Vertical indices: levels0() • Compute z-coordinates at nodes, sides and elements • Set wet/dry flags for elements • an element is "dry" if one of nodes is dry • an element is wet if all nodes are wet (and all sides are wet as well) • weed out isolated wet nodes: a node is wet if and only if at least one surrounding element is wet • A side is wet if and only if at least one adjacent element is wet • In short: a wet element has 3 wet nodes and sides; a dry element may have wet or dry nodes/sides consistency of indices is fundamental in the code • Rewetted nodes: calculate u,v (average); S & T (tracking) • Rewetted sides: calculate u,v (average); S & T (tracking)
Vertical indices: levels1() • Suitable for fine grid resolution • Iteration for finding interfacial nodes • Go along shoreline and make surrounding elements wet or dry • Enforce consistency in wet/dry flags • Compute side vel. at newly wetted sides based on average of neighbors • Final extrapolation of elevation into dry zone • Weed out isolated wet nodes • Reset vel. at dry sides to 0 • Reset elevations at dry nodes below MSL to add a thin wet layer • Carry on with the stuff in levels0()
Backtracking (1): quicksearch() • Inputs: initial position (x0,y0), nnel0, jlev0, total time, estimated destination (xt,yt) • Outputs: updated destination (xt,yt), nnel1, jlev1, ratios for 3D interpolation • nfl – abnormal flag • Iteration – track the intersecting sides • Check if (xt,yt) is already inside nnel0 • Nudge (x0,y0) to avoid underflow problem • Compute first intersecting side • Abnormal cases: wet/dry interface; horizontal bnd; too many iterations (“death trap”) • wet/dry interface or horizontal bnd: continue with tangential velocity (if too small, exit with nfl=1 and most recent position for (xt,yt)) • Death trap: exit with nfl=1 • Tricky underflow problems (check if inside the element …) • Moving target search – role of clock time (trm) • Complex logic, but efficient nnel0 (xt,yt) (x0,y0) nnel0
Char. line Backtracking (2): Euler • Subroutine btrack() • Inputs: starting position (x00,y00,z00, ielem etc), vel., and algorithm flag (iadvf) • Outputs: final destination, element, level, vel., and interpolated S,T • Euler tracking • First order accuracy • Sub-step computed from local gradient • Use quicksearch() to find end points at each sub time step • Do 3D interpolation at the end points for new vel. (interpol.gr3 for vertical): blend of continuous and discontinuous vel. • If nfl=1 during the stepping, exit • After tracking • Kriging (optional): do vertical interpolation first to obtain Kriging data; use inverted matrix • S,T at foot of char. line: needs S,T at nodes & sides • Split linear • Quadratic: upwind bias in vertical • Use quadratic shape function in 3D • Constrain near bottom or surface • Normal cases • Record extrema among values used in interpolation (6x3) • Impose bounds for the interpolated values (alleviate dispersion) Normal Constrained
Backtracking (3): 5th-order adaptive Runge-Kutta • Based on 4th-order R-K, but with adaptive step to increase accuracy and efficiency • Error estimator Given a desired accuracy D0, the appropriate time step is In the code, the adaptivity loop is limited to 5 iterations No abnormal exit from quicksearch() After the foot of char. is found, proceed as before Efficiency: often larger time steps are invoked; moderately more expensive than Euler Accuracy: conservation
Parallel version: domain decomposition • The domain is first partitioned into non-overlapping sub-domains (in element sense) • sub-domain may not be contiguous • Then each sub-domain is augmented with 1 layer of ghost elements where exchange of info occurs • residents (elements, sides, nodes) • ghosts • aquire_hgrid(.false.)in partition_hgrid(): initial partition based on naïve ordering of elements • ParMetis lib • MPI-based parallel library that implements a variety of algorithms for partitioning and repartitioning unstructured graphs • based on the multilevel partitioning and fill-reducing ordering algorithms that are implemented in the serial package METIS • Optimal partitioning is obtained by minimizing the edge cuts • Adjustable parameters for optimal performance • aquire_hgrid(.true.): final partitioning
Parallel version: nomenclature • Each process (sub-domain) has its own set of variables • global-to-local, local-to-global mappings • resident vs augmented (i.e., resident + ghost) • Linked lists: iegl()%next%next%next… • Each process has its own version of this list, with the local element number at the top (if inside aug. domain), and after that the rank numbers in ascending order • ipgl and isgl(): interfacial nodes/sides will be resident in more than 1 domain • Consistency among processes (e.g., elevations): follow the smallest rank • Local vs ball info: need for exchange of info • Computation usually done inside resident domain • Communication done in ghost domain (expensive) • Communication • MPI standard • Bundle up before posting • Boundary info: all global info for simplicity A linked list NULL NULL tail head
Parallel version: communication (1) ! Count and index sends nbtsend=0 do i=1,nbts irank=iegrpv(btsendq(i)%iegb) inbr=ranknbr(irank) if(inbr==0) then write(errmsg,*) 'INTER_BTRACK: bt to non-neighbor!',irank call parallel_abort(errmsg) endif nbtsend(inbr)=nbtsend(inbr)+1 if(nbtsend(inbr)>mnbt) call parallel_abort('bktrk_subs: overflow (1)') ibtsend(nbtsend(inbr),inbr)=i-1 !displacement enddo ! Set MPI bt send datatypes do inbr=1,nnbr if(nbtsend(inbr)/=0) then #if MPIVERSION==1 call mpi_type_indexed(nbtsend(inbr),bbtsend,ibtsend(1,inbr),bt_mpitype, & btsend_type(inbr),ierr) #elif MPIVERSION==2 call mpi_type_create_indexed_block(nbtsend(inbr),1,ibtsend(1,inbr),bt_mpitype, & btsend_type(inbr),ierr) #endif if(ierr/=MPI_SUCCESS) call parallel_abort('INTER_BTRACK: create btsend_type',ierr) call mpi_type_commit(btsend_type(inbr),ierr) if(ierr/=MPI_SUCCESS) call parallel_abort('INTER_BTRACK: commit btsend_type',ierr) endif enddo !inbr ! Post recvs for bt counts do inbr=1,nnbr call mpi_irecv(nbtrecv(inbr),1,itype,nbrrank(inbr),700,comm,btrecv_rqst(inbr),ierr) if(ierr/=MPI_SUCCESS) call parallel_abort('INTER_BTRACK: irecv 700',ierr) enddo ! Post sends for bt counts do inbr=1,nnbr call mpi_isend(nbtsend(inbr),1,itype,nbrrank(inbr),700,comm,btsend_rqst(inbr),ierr) if(ierr/=MPI_SUCCESS) call parallel_abort('INTER_BTRACK: isend 700',ierr) enddo
Parallel version: communication (2) ! Wait for recvs to complete call mpi_waitall(nnbr,btrecv_rqst,btrecv_stat,ierr) if(ierr/=MPI_SUCCESS) call parallel_abort('INTER_BTRACK: waitall recv 700',ierr) ! Wait for sends to complete call mpi_waitall(nnbr,btsend_rqst,btsend_stat,ierr) if(ierr/=MPI_SUCCESS) call parallel_abort('INTER_BTRACK: waitall send 700',ierr) ! write(30,*)'Mark 4.5' ! Set MPI bt recv datatypes i=0 !total # of recv from all neighbors nnbrq=0; !# of "active" neighbors do inbr=1,nnbr if(nbtrecv(inbr)/=0) then nnbrq=nnbrq+1 if(nbtrecv(inbr)>mnbt) call parallel_abort('bktrk_subs: overflow (3)') do j=1,nbtrecv(inbr); ibtrecv(j,inbr)=i+j-1; enddo; !displacement i=i+nbtrecv(inbr) #if MPIVERSION==1 call mpi_type_indexed(nbtrecv(inbr),bbtrecv,ibtrecv(1,inbr),bt_mpitype, & btrecv_type(inbr),ierr) #elif MPIVERSION==2 call mpi_type_create_indexed_block(nbtrecv(inbr),1,ibtrecv(1,inbr),bt_mpitype, & btrecv_type(inbr),ierr) #endif if(ierr/=MPI_SUCCESS) call parallel_abort('INTER_BTRACK: create btrecv_type',ierr) call mpi_type_commit(btrecv_type(inbr),ierr) if(ierr/=MPI_SUCCESS) call parallel_abort('INTER_BTRACK: commit btrecv_type',ierr) ! write(30,*)'recev from',nbrrank(inbr),nbtrecv(inbr) endif enddo !inbr ! Check bound for btrecvq if(i>mnbt*nnbr) call parallel_abort('bktrk_subs: overflow (2)') ! write(30,*)'Mark 5' ! Post sends for bt data do inbr=1,nnbr if(nbtsend(inbr)/=0) then ! btsendq(1)%rank is the starting address call mpi_isend(btsendq(1)%rank,1,btsend_type(inbr),nbrrank(inbr),701, & comm,btsend_rqst(inbr),ierr) if(ierr/=MPI_SUCCESS) call parallel_abort('INTER_BTRACK: isend 701',ierr) else btsend_rqst(inbr)=MPI_REQUEST_NULL endif enddo ! Post recvs for bt data do inbr=1,nnbr if(nbtrecv(inbr)/=0) then call mpi_irecv(btrecvq(1)%rank,1,btrecv_type(inbr),nbrrank(inbr),701, & comm,btrecv_rqst(inbr),ierr) if(ierr/=MPI_SUCCESS) call parallel_abort('INTER_BTRACK: irecv 701',ierr) else btrecv_rqst(inbr)=MPI_REQUEST_NULL endif enddo
Inter-subdomain backtracking: inter_btrack() Outer loop • Send and recv lists (structures) • quicksearch() - abnormal cases • nfl=2: exit aug. domain upon entry • nfl=3: exit aug. domain during iteration (redo) btsendq% btrecvq% Nbt, btlist% New btlist% mpi_waitsome send% recv% All ranks commun. Inner loop btdone%rank btrack() yes no Aug. domain? All done? btdone Exit domain btsendq% bttmp%
A(entire row) Solver: Jacobian Conjugate Gradient x .. residual ….. Jacobian pre-conditioner gradient Halo (interfacial) nodes do x new guess Zero out halo nodes before multiplication Exchange ghosts whenever they are updated new gradient end do
Grid generation • Unstructured grid offers max flexibility • resolve geometry & bathymetry • represent features • local refinement & coarsening • grid must be conformal: the intersection of any 2 elements is either the empty set, or a vertex, or an edge • Methods • Quadtree • Advancing front • Delauney • Software • Gredit • Shewchuk’s Triangle • ARGUS • SMS BP BQ P Q
SELFE inputs • *.gr3: grid-like files • *.in: vgrid; hotstart; parameters; nudging files • *.th: time history (b.c.) • *.ic: initial condition for T,S • sflux/: atmos. forcings • gotmturb.inp: GOTM turbulence closure inputs • hgrid.ll: lon/lat form of horizontal grid • Bare minimum (mandatory) for pre-processing (ipre=1) • hgrid.gr3 (hgrid.ll if you are using some modules): no need for correct bathymetry & boundaries yet • vgrid.in • param.in • Pre-processing • Prepare the 3 input files, and set ipre=1 in param.in (only the parts up to CPP projection are needed) • Run SELFE with 1 CPU only • Check fort.11 for all violating sides (whose nodes are given there) if you are using indvel=0 or -1 (filter) • Edit grid and repeat until pre-processing is successful - tips • Other mandatory inputs: interpol.gr3 & drag input (drag.gr3 or rough.gr3) • Difference between serial and parallel versions • param.in • hotstart.in • *nu.in • *3D.th
.gr3 and .ll files Except for hgrid.gr3, only depth info is used Comments 44343 24025 1 -90.4293 30.1689 0.30 2 -90.4313 30.1625 0.30 3 -90.4327 30.1559 0.20 4 -90.4320 30.1498 0.20 ……………………………………… ……………………………………… 1 3 1 2 3 2 3 2 4 5 3 3 15943 16197 15942 ……………………………………… ……………………………………… nodes elements 2 = Number of open boundaries 69 = Total number of open boundary nodes 4 = Number of nodes for open boundary 1 1 2 3 4 ……………………………………… 12 = number of land boundaries 1756 = Total number of land boundary nodes 737 0 = Number of nodes for land boundary 1 29368 29421 29420 29467 ……………………………………… Boundary info (hgrid.gr3 only)
vgrid.in • 28 18 100. !hs • Z levels • -5000. • -3000. • …….. • -100.00 • S levels • 30. 0.9 10. !hc , qb , qf • 18 -1 • 19 -0.9 • …….. • 28 0. Remember: you can get a sneak preview of sample z-coordinates at various depths by running the pre-processor Pure S zone z SZ zone s zone S zone s=0 Nz hc hs hs S-levels kz s=-1 kz-1 Z-levels 2 1
param.in (1) • Free format rules: • Lines beginning with "!" are comments; blank lines are ignored; • one line for each parameter in the format: keywords= value; • keywords are case sensitive; spaces allowed between keywords and "=" and • value; comments starting with "!" allowed after value; • value is an integer, double, or 2-char string; for double, any of the format is acceptable: 40 40. 4.e1; use of decimal point in integers is OK but discouraged; • Order of parameters not important !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Model configuration parameters !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ !----------------------------------------------------------------------- ! Pre-processing option. Useful for checking grid violations and get sample z coordinates (sample_z.out) !----------------------------------------------------------------------- ipre = 0 !Pre-processor flag (1: on; 0: off) !----------------------------------------------------------------------- ! # of passive tracers; need to update bctides.in accordingly. !----------------------------------------------------------------------- ntracers = 0 !----------------------------------------------------------------------- ! Bed deformation option (1: on; 0: off). If imm=1, bdef.gr3 is needed. !----------------------------------------------------------------------- imm = 0 ! ibdef = 10 !needed if imm=1; # of steps used in deformation
param.in (2) !----------------------------------------------------------------------- ! Coordinate option: 1: Cartesian; 2: lon/lat (but outputs are CPP projected ! to Cartesian). If ics=2, CPP projection center is given by (cpp_lon,cpp_lat) !----------------------------------------------------------------------- ics = 1 !Coordinate option cpp_lon = -124 !CPP projection centers: lon cpp_lat = 46.25 !CPP projection centers: lat !----------------------------------------------------------------------- ! Baroclinic/barotropic option. If ibcc=0 (baroclinic model), itransport is not used. !----------------------------------------------------------------------- ibcc = 0 !Baroclinic option itransport = 1 nrampbc = 1 !ramp-up flag for baroclinic force drampbc = 1. !not used if nrampbc=0 !----------------------------------------------------------------------- ! Hotstart option. 0: cold start; 1: hotstart with time reset to 0; 2: ! continue from the step in hotstart.in !----------------------------------------------------------------------- ihot = 1 !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Physical parameters !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ !----------------------------------------------------------------------- ! Horizontal viscosity option; if ihorcon=1, horizontal viscosity is given in hvis.gr3. !----------------------------------------------------------------------- ihorcon = 0 !----------------------------------------------------------------------- ! Horizontal diffusivity option. if ihdif=1, horizontal viscosity is given in hdif.gr3 !----------------------------------------------------------------------- ihdif = 1
param.in (3) !----------------------------------------------------------------------- ! Bottom drag formulation option. If idrag=1, linear drag is used (in this case, itur<0 ! and bfric=0); if idrag=2 (default), quadratic drag formulation is used. !----------------------------------------------------------------------- idrag = 2 !----------------------------------------------------------------------- ! Bottom friction. bfric=0: drag coefficients specified in drag.gr3; bfric=1: ! bottom roughness (in meters) specified in rough.gr3 !----------------------------------------------------------------------- bfric = 0 !nchi in code !Cdmax = 0.01 !needed if bfric=1 !----------------------------------------------------------------------- ! Coriolis. If ncor=-1, specify "lattitude" (in degrees); if ncor=0, ! specify Coriolis parameter in "coriolis"; if ncor=1, model uses ! lat/lon in hgrid.ll for beta-plane approximation, and in this case, ! the lattitude specified in CPP projection ('cpp_lat') is used. !----------------------------------------------------------------------- ncor = 1 !lattitude = 46 !if ncor=-1 !coriolis = 1.e-4 !if ncor=0 !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Numerical parameters !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ !----------------------------------------------------------------------- ! Initial condition. This value only matters for ihot=0 (cold start). ! If icst=1, the initial T,S field is read in from temp.ic ans salt.ic (horizontally varying). ! If icst=2, the initial T,S field is read in from ts.ic (vertical varying). !----------------------------------------------------------------------- icst = 1
param.in (4) !----------------------------------------------------------------------- ! Mean T,S profile option. If ibcc_mean=1 (or ihot=0 and icst=2), mean profile ! is read in from ts.ic, and will be removed when calculating baroclinic force. ! No ts.ic is needed if ibcc_mean=0. !----------------------------------------------------------------------- ibcc_mean = 0 !----------------------------------------------------------------------- ! Methods for computing velocity at nodes. If indvel=-1, non-comformal ! linear shape function is used for velocity; if indvel=0, comformal ! linear shape function is used; if indvel=1, averaging method is used. ! For indvel<=0, Shapiro filter is used for side velocity. !----------------------------------------------------------------------- indvel = 0 shapiro = 0.5 !default is 0.5 !----------------------------------------------------------------------- ! Max. horizontal velocity magnitude, used mainly to prevent problem in ! bulk aerodynamic module !----------------------------------------------------------------------- rmaxvel = 10. !----------------------------------------------------------------------- ! Min. vel for backtracking !----------------------------------------------------------------------- velmin_btrack = 1.e-3
param.in (5) !----------------------------------------------------------------------- ! Wetting and drying. If ihhat=1, \hat{H} is made non-negative to enhance ! robustness near wetting and drying; if ihhat=0, no retriction is imposed for ! this quantity. ! inunfl=0 is used for normal cases and inunfl=1 (not available yet) is used for more accurate wetting ! and drying if grid resolution is sufficiently fine. !----------------------------------------------------------------------- ihhat = 1 inunfl = 0 h0 = 0.01 !min. water depth for wetting/drying !----------------------------------------------------------------------- ! Implicitness factor (0.5<thetai<=1). !----------------------------------------------------------------------- thetai = 0.6 !----------------------------------------------------------------------- ! Run time and ramp option !----------------------------------------------------------------------- rnday = 42 !total run time in days nramp = 1 !ramp-up option (1: on; 0: off) dramp = 2. !needed if nramp=1; ramp-up period in days dt = 150. !Time step in sec !----------------------------------------------------------------------- ! Solver option. JCG is used presently. !----------------------------------------------------------------------- slvr_output_spool = 50 !output spool for solver info mxitn = 1000 !max. iteration allowed tolerance = 1.e-12 !error tolerance
param.in (6) !----------------------------------------------------------------------- ! Advection (ELM) option. If nadv=1, backtracking is done using Euler method, and ! 'dtb_max1' is the _minimum_ step used and 'dtb_max2' is not needed. If nadv=2, ! backtracking is done using 5th-order Runge_Kutte method and 'dtb_max1' is ! the max. step used. If nadv=0, advection in momentum is turned off/on in adv.gr3 ! (the depths=0,1, or 2 also control methods in backtracking as above), and ! in this case, 'dtb_max1' is the _minimum_ step used in Euler (depth=1) and 'dtb_max1' is ! the max. step used in 5th-order R-K (depth=2). !----------------------------------------------------------------------- nadv = 1 dtb_max1 = 15. dtb_max2 = 15. !----------------------------------------------------------------------- ! Interpolation methods in ELM for ST and velocity. If inter_st=1, split linear ! is used for T,S at foot of char. line. If inter_st=2, quadratic interpolation ! is used there. If inter_st=0, the interpolation method is specified in lqk.gr3. ! If inter_mom=0, linear interpolation is used for velocity at foot of char. line. ! If inter_mom=1, Kriging is used, and the choice of covariance function is ! specified in 'kr_co'. ! For velocity, additional controls are available in 'blend_internal' and 'blend_bnd', ! two parameters specifying how continuous and discontinuous velocities are blended ! for internal and boundary sides. !----------------------------------------------------------------------- inter_st = 1 !formerly lq inter_mom = 0 kr_co = 1 !not used if inter_mom=0 blend_internal = 0. blend_bnd = 0.
param.in (7) !----------------------------------------------------------------------- ! Transport method. If iupwind_t=0, ELM is used for T or S. If ! iupwind_t=1, upwind method is used. If iupwind_t=2, ! 2nd-order TVD method is used. ! If iupwind_t>0, the interpolation ! method above ('inter_st') does not affect T (or S). !----------------------------------------------------------------------- iupwind_t = 1 !tvd_mid = AA !flimiter = SB !----------------------------------------------------------------------- ! Atmos. option. If nws=0, no atmos. forcing is applied. If nws=1, atmos. ! variables are read in from wind.th. If nws=2, atmos. variables are ! read in from sflux_ files. ! If nws>0, 'iwindoff' can be used to scale wind speed (with windfactor.gr3). !----------------------------------------------------------------------- nws = 2 wtiminc = 150. !needed if nws/=0; time step for atmos. forcing nrampwind = 1 !ramp-up option for atmos. forcing drampwind = 1. !needed of nrampwind/=0; ramp-up period in days iwindoff = 0 !needed only if nws/=0 !----------------------------------------------------------------------- ! Heat and salt exchange. isconsv=1 needs ihconsv=1; ihconsv=1 needs nws=2. ! If isconsv=1, need to compile with precip/evap module turned on. !----------------------------------------------------------------------- ihconsv = 1 !heat exchange option isconsv = 0 !evaporation/precipitation model
param.in (8) !----------------------------------------------------------------------- ! Turbulence closure. !----------------------------------------------------------------------- itur = 3 ! dfv0 = 0 ! dfh0 = 0 turb_met = KL turb_stab = KC !----------------------------------------------------------------------- ! Nudging options for T,S. If inu_st=0, no nudging is used. If inu_st=1, ! nudge T,S to initial condition according to relaxation constants specified ! in t_nudge.gr3 and s_nudge.gr3. If inu_st=2, nudge T,S to values in temp_nu,in ! and salt_nu.in (with step 'step_nu') according to t_nudge.gr3 and s_nudge.gr3. !----------------------------------------------------------------------- inu_st = 2 !nudging option step_nu = 43200. !in sec; only used if inu_st=2 vnh1 = 400 !vertical nudging; disabled at the moment vnf1 = 0 !vertical nudging; disabled at the moment vnh2 = 401 !vertical nudging; disabled at the moment vnf2 = 0. !vertical nudging; disabled at the moment !----------------------------------------------------------------------- ! Cutt-off depth for cubic spline interpolation near bottom when computing baroc. force. ! If depth > depth_zsigma, ! a min. (e.g. max bottom z-cor for the element) is imposed in the spline; ! otherwise constant extrapolation below bottom is used. !----------------------------------------------------------------------- depth_zsigma = 100. !----------------------------------------------------------------------- ! Dimensioning parameters for inter-subdomain btrack. !----------------------------------------------------------------------- s1_mxnbt = 0.5 s2_mxnbt = 3.0
param.in (9) !----------------------------------------------------------------------- ! Global output options. !----------------------------------------------------------------------- iwrite = 0 !not used nspool = 6 !output step spool ihfskip = 576 !stack spool; every ihfskip steps will be put into 1_*, 2_*, etc... elev.61 = 1 !0: off; 1: on pres.61 = 1 airt.61 = 1 shum.61 = 1 srad.61 = 1 flsu.61 = 1 fllu.61 = 1 radu.61 = 1 radd.61 = 1 flux.61 = 1 evap.61 = 0 prcp.61 = 0 wind.62 = 1 wist.62 = 0 dahv.62 = 0 vert.63 = 1 temp.63 = 1 salt.63 = 1 conc.63 = 0 tdff.63 = 1 vdff.63 = 0 kine.63 = 0 mixl.63 = 0 zcor.63 = 1 hvel.64 = 1 testout = 0
param.in (10) !----------------------------------------------------------------------- ! Option for hotstart outputs !----------------------------------------------------------------------- hotout = 1 !1: output *_hotstart every 'hotout_write' steps hotout_write = 4032 !divisible by ihfskip !----------------------------------------------------------------------- ! Conservation check option. If consv_check=1, some fluxes are computed ! in regions specified in fluxflag.gr3. !----------------------------------------------------------------------- consv_check = 0
Tides in bctides.in 04/15/2004 00:00:00 PST 0 40. ntip 9 nbfr Z0 0. 1. 0. O1 6.759775e-05 1.15343 118.92151 K1 7.292117e-05 1.09047 228.49820 Q1 6.495457e-05 1.11903 46.20171 P1 7.251056e-05 0.99396 5.74201 K2 1.458423e-04 1.24323 276.51392 N2 1.378797e-04 0.97208 273.16483 M2 1.405189e-04 0.97117 345.57837 S2 1.454441e-04 1.00136 240.08908 4 nope 3 3 0 -4 0 !Georgia Z0 0.1299680 0.000000E+00 Invalid 0.1299680 0.000000E+00 Invalid 0.1299680 0.000000E+00 Invalid O1 0.361010246 281.862898 0.36065857 281.918305 0.360767938 281.968364 .................... 1.e-3 T relaxation 88 3 0 0 0 !ocean Z0 8.892417E-02 0.000000E+00 Invalid 8.631096E-02 0.000000E+00 ........................ O1 ......................... Phases don’t matter for Z0
interpol.gr3: interpolation method • Preferred method in S zone: along S plane • Method in SZ zone: along Z plane 2 1
Hotstart.in (unformatted binary) ! Element data do i=1,ne_global read(36) iegb, idry_e, (we(j,i), tsel(1:2,j,i), (trel0(l,j,i), trel(l,j,i), l=1,ntracers), j=1,nvrt) enddo !i=1,ne_global ! Side data do i=1,ns_global read(36) isgb, idry_s, (su2(j,i), sv2(j,i), tsd(j,i), ssd(j,i), j=1,nvrt) enddo ! Node data do i=1,np_global read(36) ipgb, eta2, idry, (tnd(j,i), snd (j,i), tem0 (j,i), sal0 (j,i), q2(i,j), xl(i,j), dfv(i,j), dfh(i,j), dfq1(i,j), dfq2(i,j), j=1,nvrt) enddo Nudging (temp_nu.in and salt_nu.in) (unformatted binary) do it=1,n_nudging_steps read(35) time_stamp do i=1,np_global read(35)(temp_nu(j,i),j=1,nvrt) enddo !i enddo !it
*.th: ASCII flux.th (negative for inflow), temp.th, salt.th, elev.th, wind.th • Corresponds to b.c. flag=1 • Easy to plot ………….. Time (sec) value 2 (2nd bnd) value N (Nth bnd) value 1 (1st bnd) 86400 -0.084950529 0. -0.283168435 -0.226534754 -3.19980335 -16.367136 172800 -0.084950529 0. -0.283168435 -0.226534754 -0.906139016 -22.2853565 259200 -0.084950529 0. -0.25485158 -0.226534754 -0.764554799 -16.367136 345600 -0.084950529 0. -0.25485158 -0.226534754 -0.764554799 -16.367136 432000 -0.084950529 0. -0.25485158 -0.226534754 -0.877822161 -16.367136 518400 -0.084950529 0. -0.25485158 -0.226534754 -3.17148638 -16.367136 604800 -0.084950529 0. -0.25485158 -0.226534754 -0.906139016 -16.367136 …………………………………………………………………………………………………………. Time step is the main time step as in param.in except for wind.th (specified in param.in)
*3D.th: binary elev3D.th, temp3D.th, salt3D.th, uv3D.th (not discharge!) • Corresponds to b.c. flag=±4 h do it=1,nsteps write(18,rec=irec_out+1)time,((th(i,j),j=1,nond(i)),i=1,nope) enddo S,T do it=1,nsteps write(18,rec=irec_out+1)time,(((th(i,j,l),l=1,nvrt),j=1,nond(i)),i=1,nope) enddo u,v do it=1,nsteps write(18,rec=irec_out+1)time,(((u(i,j,l), v(i,j,l),l=1,nvrt),j=1,nond(i)),i=1,nope) enddo
*.ic: initial condition for T,S • icst=1 in param.in: need temp.ic and salt.ic (.gr3 format) • icst=2 or ibcc_mean=1 in param.in: needs ts.ic (mean density removed) 43 !total # of vertical levels;1 -2000. 4. 34. !level #, z-coordinates, temperature, salinity2 -1000. 5. 34.3 -500. 6. 33.4 -200. 7. 32.5 -100. 8. 31............ Sample ts.ic
sflux • netcdf files reformatted from GFS, NARR, NAM, MM5… • Three types • sflux_air_1_*.nc: wind speed (u,v) (10m above MSL), air pressure (MSL), surface air T (2m above MSL), and specific humidity (2m above MSL) • sflux_rad_1_*.nc: downward long (infrared) and short (solar) wave radiation fluxes • sflux_prc_1_*.nc: surface precipitation rate (kg/m2/s) – optional • Starting point: NARR (1979-2006) in Utility Lib • Download NARR files for your application period. Each NARR file covers ~ 1 day (e.g., narr_air.1981_01_28.nc is for Jan. 28, 1981). • In your run directory, mkdir sflux and inside it, create symbolic links to the NARR files. e.g., if you run starts from June 10, 2004 and ends June 20, 2004, then sflux_air_1.001.nc --> narr_air.2004_06_10.nc sflux_air_1.002.nc --> narr_air.2004_06_11.nc ... sflux_air_1.011.nc --> narr_air.2004_06_20.nc sflux_air_1.012.nc --> narr_air.2004_06_21.nc (extra day to account for time zone difference). • Similarly for sflux_rad_*.nc and sflux_prc_*.nc. The number "1" after "air_" denotes first data set used • In sflux, copy the file sflux_inputs.txt and edit it to reflect the start time. The field "utc_start" is hours behind UTC. • Create your own netcdf files: see gen_atmos.f90 in Utility Lib for the details of format • Some tips • The maximum numbers of input files and time steps (used in the atmospheric forcing) are set in the module netcdf_io (you can search for it in the sflux*.F90 code) as max_files and max_times. If your application requires larger values simply increase them in the module. • The grids used in atmospheric forcings (usually structured) can be different from hgrid.gr3, but must encompass the latter for successful interpolation, which is done in SELFE at run time (both in space and in time).
fluxflag.gr3 • Compute various fluxes, volume and mass 0 1 2 0
[t,s]_nudge.gr3 • Horizontal nudging parameters for T,S
Web http://www.ccalmr.ogi.edu/CORIE/modeling/selfe http://www.ccalmr.ogi.edu/CORIE/modeling/elcirc Mailing list archive: http://www.stccmop.org/node/1683
Miscellaneous issues • vgrid • Pure S first • Spacing parameters • Try not to use unevenly spaced s-coordinates • Time step: smaller not necessarily better! • Implicitness factor: implication for dissipation • indvel and Kriging: battle between diffusion and dispersion • Horizontal b.c. for velocity: uv3D.th • Datum issue in estuary and rivers • initially “dry” river • ELM transport: freshening of the estuary river extended 2m 10m Diffmin=0.01m2/s
Post-processing and visualization • Combining binary files (MPI): perl script • Extracting time series: vertical profiles, horizontal slabs, transects • Linear interpolation in 3D • calculation of z-coordinates • wet/dry treatment • *Model API (netcdf) • Residuals, harmonics analysis • Visualization • xmgredit • xmvis6 & g3 • matlab • *VisTrail