600 likes | 759 Views
銀河形成. 梅村 雅之 筑波大学 物理学系 (計算物理学研究センター). I. 銀河形成の初期条件/境界条件 II. 第一世代天体 II I . 宇宙再電離 IV. 銀河形成と進化. 赤方 偏移. 天体の起源. 物質の起源. 時間. 量子ゆらぎ. 量子宇宙. 10 -44 秒. 10 30. 古典ゆらぎ (ハリソン-ゼルドビッチスペクトル). ダークマター生成 陽子・中性子(バリオン)形成. 密度ゆらぎ (宇宙背景放射ゆらぎ). 軽元素合成 ( p,n,He,D,T,Be,Li ). 10 3. 50 万年. 宇宙再結合.
E N D
銀河形成 梅村 雅之 筑波大学 物理学系 (計算物理学研究センター) I. 銀河形成の初期条件/境界条件 II. 第一世代天体 III. 宇宙再電離 IV. 銀河形成と進化
赤方 偏移 天体の起源 物質の起源 時間 量子ゆらぎ 量子宇宙 10-44秒 1030 古典ゆらぎ (ハリソン-ゼルドビッチスペクトル) ダークマター生成 陽子・中性子(バリオン)形成 密度ゆらぎ (宇宙背景放射ゆらぎ) 軽元素合成 (p,n,He,D,T,Be,Li) 103 50万年 宇宙再結合 Dark Age 重元素合成 超新星爆発 α元素, r-,s-過程元素, ... 第一世代天体 1億年 15 宇宙再電離 銀河形成 SNII α元素, r-,s-過程元素, ... (クェーサー,星,BH) SNIa 鉄族元素, ... 5 銀河団 太陽系 140億年 0 有機物 宇宙大規模構造 生命 (現在)
I. 銀河形成の初期条件と境界条件 1. Cosmological Parameters 2. Fluctuation Spectrum 3. Reionization
COBE =7°– 180° WMAP =0.2°– 180°
WMAP 理論
Cosmological Parameters (CDM Universe) Fluctuation Spectrum (CDM)
Thomson optical depth (Reionization)
First Objects (Pop III) CMB n=1 gg Mgal Mcluster CDM Density Fluctuations Neutral Ionized 30 1 10 Dwarf Galaxies 1+zc Galaxies Clusters 1
II. 第一世代天体 1. H2 Formation 2. First Objects 3. First Stars
初期ゆらぎの重力収縮 ジーンズ条件(重力エネルギー>熱エネルギー) 密度上昇 ← 冷却過程で支配される 現在の銀河 重元素冷却,ダスト冷却 第一世代天体 星が生まれていない ⇒ 重元素がない 重元素以外の冷却 ⇒ 水素分子
e- p + - e- p 水素分子形成 電気双極子モーメント=0 ⇒ H+H→H2+ 禁止 H 3体反応 (高密度) H2 e.g. 宇宙晴れ上がり時 (低密度) 陽子反応 (z100) 電子反応 (z100) H2 H2 H H H- H+
Formation of Pop III Stars Reaction 1: e-+ H H- + h H- + H H2 + e- (z100) Reaction 2: p + H H2 ++ hH2 ++ H H2+ p (z100) Matsuda, Sato, & Takeda (1969, Prog. Theor. Phys., 42, 219) Non-equilibrium processes equilibrium non-equilibrium Susa et al. (1998, PTP, 100, 63) IGM (residual ion. e10-5): H210-5 No shock ion. (Ts<104K): H2 10-4 – 10-3 Shock ion. (Ts >104K): H210-3 –10-2
First Object Mass Yoshida et al. (2003, ApJ, 592, 645) 60million particles 100M per gas particle Mhalo 106 M
Pop III Stars Gravitational Energy=Internal Energy 3D (sphere)M = const. 1D (sheet)M/r2 = const. 2D (cylinder)M/r = const. Nishi et al. (1998, PTP, 100, 881)
Fragmentation of Cylinder Rate equation e-, H, H+, H-, H2, H2+, D, D+, HD, He, He+, He++ Level population (regarding level j ) Ckj Akj j Ajk Cjk Bjk Radiation transfer (or Escape probability ) Cooling function
Critical Density ncrit Ckj Akj j Ajk Cjk Ckj Ckj j Cjk Cjk
Fragment Mass at ncrit H2 cooling A20 ~ 2.94 10-11
Opacity Limited Mass Uehara et al. (1996, ApJ, 473, L95) Rees (1976, MNRAS, 176, 483) (Chandrasekhar mass) Nakamura & Umemura (2001, ApJ, 548, 19) 2D Simulation
=0.1 Nakamura & Umemura (2001, ApJ, 548, 19) Initial high density leads to low fragment mass.
(M) Pop III Star IMF Fragment mass criterion + CDM spectrum Nakamura & Umemura (2001, ApJ, 548, 19)
HD Molecule Cooling UV ionization(e.g. Corbelli et al. 1998; Susa & Umemura 2000) Shock ionization(e.g. Shapiro & Kang 1987; Ferrara 1998) High H2 abundance HD: A10 ~ 5.12 10-8 c.f. H2: A20 ~ 2.94 10-11 HD Cooling critical density:
Opacity Limited Mass HD cooling Uehara & Inutsuka 2000, ApJ, 531, L91 Nakamura & Umemura (2002, ApJ, 569, 549)
Pop III Pop I Mcore10-3 M 10-3 M Mfrag 103M>0.1M M10-3 M/yr10-5 M/yr . Protostellar Collapse Omukai & Nishi 1998, ApJ, 508, 141; Omukai 2000, ApJ, 534, 809 2nd core Z/Z 1st core grain temperature Conversion of Kelvin-Helmholtz Contraction
Envelope: 103 M Core:10-2 M Infall Rate: 10-2 M/yr
SN Explosion of Massive Stars Umeda & Nomoto 2002, ApJ, 565, 385
End-Product of Massive Stars Heger et al. 2003, ApJ, 591, 288 Type I Collapsar: BH formation by core collapse Type II Collapsar: BH formation by fallback caused by SN shock Type III Collapsar: BH formation without proto-neutron star formation JetSN: Hypernova GRB: long GR burst(a portion of Jet SNs) Z/Z 1 Pair 0
III. 宇宙再電離 1. Self-Shielding 2. Reionization History 3. UVB History
Propagation of Ionizing Front Yoshida et al. 2003 Stars in molecular gas clouds HII regions + soft UV
Early Reionization Process Ciardi, Ferrara & White 2003, MNRAS, 334, L17 z = 17.6 z=15.5 z=13.7 Larson IMF (Top-heavy) Salpeter IMF
Self-Shielding Tajiri & MU (1998, ApJ, 502, 59) UV background: I0=I21 10-21(ν/νL)- erg s-1 cm-2 Hz-1 str-1 =1-5 Radiation transfer Ionization equilibrium
Spherical Top-Hat Cloud Numerical Results (n>ncrit ; HI>0.1) Strömgren approximation Number of incident UV Number of recombination photons per second to excited states per second = Strömgren approximation underestimates the self-shielding.
Reionization History in Inhomogeneous Universe Nakamoto, MU, Susa (2001, MNRAS, 321, 593) 3次元輻射輸送方程式 自由度: 3D space, 2D directions, 1D frequency = 6D Space: N3=1283 in (8Mpc)3 Directions:NθNφ=128 2 Frequency:Nν=6 lines for H & He, analytic integration for continuum • Total operations:f NiterN3NθNφNν=11.4 Tflops・hr ( f 2000, Niter=100) • Performed with the CP-PACS (614GFLOPS)
Zel’dovich approx. withΩCDM=0.95, ΩBaryon=0.05, σ8=0.6, h=0.5 Isotropic UV: I0=I21 10-21(ν/νL)-1 erg s-1 cm-2 Hz-1 str-1 N3=1283 in (8Mpc) 3 Radiative Transfer Ionization Equilibrium
Nakamoto, MU, Susa (2001, MNRAS, 321, 593) I21=0.1 3億年 5億年 7億年 10億年
Self-Shielding (自己遮蔽) Shadowing (日陰効果) Z=9 Z=7 Z=5
Thomson Optical Depth (Poster: Hiroi, MU, Nakamoto) 0.2 0.1 I21 > 0.1 at z >14 optical depth τe(z) 0.04 :I21=0.1 :I21=10-2 0.02 :optically thin 10-2 4 8 12 16 20 z
Redshift z<4 z≈4 4<z<6 z>14 z≈20 Method proximity effect DA DA te te I21 0.5±0.1 Giallongo et al. 1996 I21≈1 I21≈0.1 I21 > 0.1 I21 ≥ 1 free Evolution of UVB Intensity I21 1 WMAP 0.5 proximity effect Ly continuum depression 0.1 4 6 14 20 Redshift
IV. 銀河形成と進化 1. Formation of Subgalactic Objects 2. Formation of Normal Galaxies 3. Galactic Evolution
First Objects (Pop III) CMB n=1 gg Mgal Mcluster CDM Density Fluctuations Neutral Ionized 30 1 10 Dwarf Galaxies 1+zc Galaxies Clusters 1
...Werner band Solomon Process Lyman-Werner band : 11.26-13.6 eV 15% of excited states decay to the continuuum (v>15) photodissociation (Solomon process) 85% populate vib-rotational levels of v14 fluorescence lines
Rate coefficient of Solomon process Self-shielding(Draine & Bertordi 1996, ApJ, 468, 269)
Radiation Hydrodynamical Collapse of Subgalactic Clouds under UVB Kitayama, Susa, MU, Ikeuchi 2001, MNRAS, 326, 1353 UV: Radiative transfer including self-shielding for LW band Spectral shape : power-law, Planck Dynamics: Spherical Lagrangian Hydrodynamics H2 : Non-equilubrium chemistry including H- photo-detachment H2+ photo-dissociation
self-shielding UV Effects Kitayama et al. 2001, MNRAS, 326, 1353 Dynamics: Spherical hydrodynamics UV: Radiative transfer H2 : Non-equilubrium chemistry
Substructure Problem Moore et al. 1999, ApJ, 524, L19 Cluster Halo Moore et al. 1999 Galactic Halo 20 times smaller than expected
再電離宇宙における矮小銀河形成 (Susa & MU 2004, ApJ, in press)
dissipationless GF dissipational GF Elliptical Galaxies Spiral Galaxies 銀河形態の起源 • Merger Hypothesis Disk major merger Ellipticals N-body, Hydro-simulation, Semi-analytic • Monolithic Bifurcation (Larson’s paradigm) Protogalactic clouds
GC3 - Grand Challenge Cosmology Consortium- Cluster Simulations on the PSC Cray T3E John Dubinski