230 likes | 355 Views
Bulk Properties of QCD – matter at Highest Colider Energies. Kai Schweda, University of Heidelberg / GSI Darmstadt. QCD Phase Diagram. Outline. Identify and study QCD bulk-matter with partonic degrees of freedom: Gobal observable - multiplicity Chemical freeze-out, T ch and m B
E N D
Bulk Properties of QCD – matter at Highest Colider Energies Kai Schweda, University of Heidelberg / GSI Darmstadt
Outline • Identify and study QCD bulk-matter with partonic degrees of freedom: • Gobal observable - multiplicity • Chemical freeze-out, Tch and mB • Partonic collectivity, Tfo and bT • Heavy – quark collectivity • Summary
Mid - rapidity Densities PHOBOS fit HIJING BBar Armesto et al. AMPT Eskola CGC KLN ASW DPMJET-III EHNRR • at LHC, dN/dh 1000 - 3000 • estimate energy density PHOBOS compilation: W. Busza, SQM07. Theory points: HI at LHC – last call for predictions, CERN, May 2007.
EoS from Lattice QCD • 1) Large increase in ! • Large increase in Ndof: Hadrons vs. partons 2) TC~ 160 MeV 3) Boxes indicate max. initial temperatures • Longest expansion duration at LHC • Expect large partonic collectivity at LHC SPS RHIC LHC ? Z. Fodor et al, JHEP 0203:014(02) C.R. Allton et al, hep-lat/0204010 F. Karsch, Nucl. Phys. A698, 199c(02).
Hadron Yield - Ratios 1) At RHIC: Tch = 160 ± 10 MeV B = 25 ± 5 MeV 2) S= 1. The hadronic system is thermalized at RHIC. 3)Short-lived resonances show deviations. There is life after chemical freeze-out. RHIC white papers - 2005, Nucl. Phys. A757, STAR: p102; PHENIX: p184; Statistical Model calculations: P. Braun-Munzinger et al. nucl-th/0304013.
Chemical Freeze-Out vs Energy • With increasing energy: • Tch increases and saturatesat Tch = 160 MeV • Coincides with Hagedorn temperature • Coincides with early lattice results limiting temperature for hadrons, Tch 160 MeV ! • mB decreases, mB = 1MeV at LHC • Nearly net-baryon free ! A. Andronic et al., NPA 772 (2006) 167.
Baryon Ratios • With increasing energy: • Baryon ratios approach unity • At LHC, pbar / p 0.95 challenge, need 1% precision to address net-baryon transport ! Compilation: N. Xu
Elliptic Flow • “Elliptic flow is larger for pions but smaller for protons at LHC than at RHIC”. • This is expected from simple, hydro-like blast-wave fits ! • larger collective flow: mass ordering more pronounced ! Theory points: C.M. Ko – last call for predictions, CERN, May 2007.
Collectivity - Energy Dependence • Collectivity parameters <bT> and <v2> increase with energy • Two extreme secenarios:(a) Tfo Tch AND bT 0.8 pure partonic collectivity at LHC! (b)Tfo Tch , bT 0.3 no collectivity, no QGP !
Higgs mass: electro-weak symmetry breaking. (current quark mass) • QCD mass: Chiral symmetry breaking. (constituent quark mass) • Strong interactions do not affect heavy-quark masses. • Important tool for studying properties of the hot/dense medium at RHIC and LHC. • Test pQCD predictions at RHIC and LHC. Quark Masses Total quark mass (MeV) X. Zhu, M. Bleicher, K.S., H. Stoecker, N. Xu et al., PLB 647 (2007) 366.
Charm Correlations c-cbar are correlated • Pair creation: back to back • Gluon splitting: forward • Flavor excitation: flat Correlations vanish frequent interactions among partons ! probe light-quark thermalization ! Pythia calcs.: G. Tsiledakis.
Hadronic Re-scattering • Hadronic re-scattering can not completely wash out DD-correlations • Frequent partonic re-scattering needed light quark thermalization ! X. Zhu, M. Bleicher, K.S., H. Stoecker, N. Xu et al., PLB 647 (2007) 366.
J/y Production P. Braun-Munzinger and J. Stachel, Nature 448 (2007) 302. suppression,compared to scaled p+p regeneration,enhancement (SPS) Low energy (SPS): few ccbar quarks in the system suppression of J/y High energy (LHC): many ccbar pairs in the system enhancement of J/y Signal of de-confinement + thermalization of light quarks !
Predictions for LHC • large ccbar production at LHC • corona effects negligible • regeneration of J/y dominates • striking centrality dependence Signature for QGP formation ! • Initial conditions at LHC ? scc A. Andonic et al., nucl-th/0701079.
x1000 Multiply Heavy-flavored Hadrons • Statistical hadronization- de-confined heavy-quarks • equilibrated heavy-quarks • Enhancement up to x1000 ! • Measure Xcc, Wcc, Bc, (Wccc) • Need total charm yields • Probe deconfinement and thermalization @ LHC • QGP ! Quarks and gluons hadrons Pb+Pb Wccc / D : p+p c c c F. Becattini, Phys. Rev. Lett. 95, 022301 (2005); P. Braun-Munzinger, K. Redlich, and J. Stachel, nucl-th/0304013.
Heavy - Quark Production • Charm x 10 • Beauty x 100 • 3) Heavy-quarks abundantly produced at LHC ! STAR data: A. Suaide, P. Djawothoto QM2006;Calcs.: R. Vogt.
ATLAS CMS • Low – momentum • CMS/ATLAS: Si only tracking • CMS: pT > 0.150 GeV • ALICE: large momentum coverage in full azimuth • address bulk properties ! • characterize Quark Gluon Plasma ! Mid - Rapidity Performance CMS: TDR.v2, CERN-LHCC-2007-009; ATLAS: B. Cole, SQM2007; ALICE: PPR.vol.II, J. Phys. G 32 (2006) 1295.
J/y e+ + e- Reconstruction J/y: c c : b b • J/y e+ + e- • identify electrons through their transition radiation Precise Measurement of Quarkonia !
D - Meson Performance • Measure secondary vertex Direct reconstruction of D0 precise measurement of total heavy-quark yield address heavy – quark collectivity ! ALICE: PPR.vol.II, J. Phys. G 32 (2006) 1295.
Summary • Bulk properties at LHC:dN / dh 1000 – 3000Tch 160 ± 10 MeV, mB 0 – 5 MeVTfo Tch all collectivity from partonic stage<bT> = 0.8 ± 0.05 (c), <v2> 0.08 • Measure spectra, correlations and v2 of:D0, D+, Ds, J/y, Lb,to identify and characterize QGP ! • ALICE is well suited for these studies