1 / 36

 ebw.tugraz.at

Graz University of Technology Institute for Railway Engineering and Transport Economics. Sustainable Track. Life-Cycle-Costs of Track. Peter Veit July 8 th , 2013.  www.ebw.tugraz.at. Quality Behaviour Cost Driver Investment Strategies Under Sleeper Pads Asphalt Layer

havard
Download Presentation

 ebw.tugraz.at

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Graz University of TechnologyInstitute for Railway Engineering and Transport Economics Sustainable Track Life-Cycle-Costs of Track Peter Veit July 8th, 2013  www.ebw.tugraz.at

  2. Quality Behaviour Cost Driver Investment Strategies Under Sleeper Pads Asphalt Layer Maintenance Strategies Integrated Maintenance Life Cycle Management Introduction Graz University of Technology

  3. Challenges - Solutions common problems:availability, maintainability solution: SUSTAINABILITYtechnically AND economical quality behaviour life cycle costing (LCC)

  4. Motivation Sustainability in the System Railways Az ÖBB-nek ma még nagyon sok mindent be kell hoznia. Die ÖBB haben auch heute noch einen sehr großen Nachholbedarf. De mondok Önöknek még valamit. 150 km vágány megújítására lett volna szükség, de csak 115 km-t újítottunk meg. Ami a váltókat illeti, 300 helyett csak 163 váltót cseréltünk ki. És akkor még kérdezik, hogy miért van olyan sok szakaszon sebességkorlátozás? Az Osztrák Köztársaság parlementi ülésének jegyzőkönyvéből. Dátum: 1970. december 19. Obviously sustainability is a sustainable problem within railways.

  5. = b t Q(t) Q e 0 Track Quality Behaviour A good track behaves well,a poor one deteriorates faster. life cycle cost - structures rate of degradation depends on actual quality level quality behaviour of track costs of operational hindrances investment = LCC + maintenance

  6. = b t Q(t) Q e 0 Track Quality Behaviour investment + maintenance Thus neglected maintenance devaluates the investment done! From the point of view of life cycle costing there are new definitions for investment and maintenance: Investment delivers just initial quality, not service life. Maintenance transforms this initial quality into service life.

  7. t = b Q(t) Q e n Track Quality Behaviour Technical Evaluation • measureddatasince 2000 • data of 3,800 km of main track: • type and age of track and com-ponents, • all recording car data, maintenance executed, • transport data and alignment quality figure • Regression analyses based on MDZ-A value or standard deviation every 5 meters time quality figure TIME track km n track work

  8. Track Quality Behaviour rolling stock transport volume alignment rail sleeper ballast sub layer drainage  sub grade

  9. Track Quality Behaviour  life cycle costs standard elements  investment and maintenance strategy

  10. Track Quality Behaviour

  11. time decreasing track quality threshold value Track Quality Behaviour The better the initial quality the less the maintenance demand.

  12. time decreasing track quality threshold value Track Quality Behaviour adequate maintenance fights causes inadequate maintenancefights symptoms Just maintenance solving problems is sustainable.

  13. time decreasing track quality Track Quality Behaviour Looking homogeneous sections of one parameter set should result in the same track behaviour. normal variation ? Nothing special - just a drainage problem.

  14. Cost Driver 1:9 1. Initial track quality precondition: subsoil quality and functionality of drainage 2. Switch density 1 EW500 ~ 450 m track 3. Ballast Quality 4. Radii 1:3 up to 30% 5. Cost of operational hindrances 6. Length of track work section up to 20% under linear 7. Traffic density 8. Quality of rolling stock ± 10% 9. and of course high speed, mixed traffic, and axle load

  15. Cost Driver Caused by insufficient subsoil strength…. …. or by inefficient drainage for a couple of years IRR of additional investment for inserting a protection layer up to 35% (!)

  16. Cost Driver

  17. Cost Driver Service Life of Track Comparing service lives of track and turnouts demonstrate the high importance of ballast quality, ballast strength as well as sieve curve.

  18. Characteristic of Track Reality Model Track is patient, not reacting immediately if treated insufficiently. Track has got a remarkable memory. It remembers insufficient support. Whenever track reacts, service life is already gone. We can‘t change the characteristics of the elephant,we need to react on it. Yes, we can save a lot of money not executing sufficient maintenance. However, when the elephant doesn’t feel well it’s already too late…

  19. Under Sleeper Pads Asphalt Layer Integrated Maintenance Track Strategies Obviously just high quality track strategies can form a stable and thus cheap track. INVESTMENT MAINTENANCE

  20. Under Sleeper Pads

  21. contact areas sleeper - ballast after tamping Under Sleeper Pads 9%after tamping and stabilising with Under Sleeper Pads (USP) up to 35% 3% to 5%after tamping before tamping upto max. 12%

  22. Under Sleeper Pads track behaviour reference track: 60E1 rails CW on concrete mono bloc sleepers 60E1 rails CW on concrete mono bloc sleepers with USP 1.500 sections compared initial quality increased by 18%b-rate reduced by 63% prolongation of tamping cycle by the factor of 2.75 service life + 38%

  23. Under Sleeper Pads Track Turnout 100% 100% 79 - 82% 68% reference with USP reference with USP additional investment in initial quality pays back IRR 12 per cent to 15 per cent

  24. Under Sleeper Pads without USP with USP intervention level: σv = 1.3 mm (1 km) intervention level: σv = 0.6 mm (1 km)

  25. train speeds above 160 km/h or radii less than 600 m and whenever track is equipped with USP turnouts with under sleeper pads are installed Investment Strategy of ÖBB Until 2009 350HT rails were just used to reduce side-wear of rails and thus installed in radii less than 500 m, only Since 2010 due to RCF 350HT rails are installed in radii up to 3000 m, depending on the traffic load, more and more grinding is executed (not just new rails or rails in small radii as before) USP is standard for main line track with concrete sleepers since 2009 and Slab track is used in tunnels only.

  26. Integrated Maintenance without USP with USP Best improvement of track quality, whenever levelling-lining-tamping (LLT) is combined with grinding or grinding is executed close after LLT

  27. Integrated Maintenance LLT only integrated maintenance standard deviation vertical 0.6 mm 0.4 mm 0.2 mm year

  28. Tamping Strategy of ÖBB single failure tamping track and turnout tamping integrated maintenance safety urgent quality 2 years planning preventive main lines8 years planning 2.000 single failures per year 900 km trackand 1.500 turnouts 150 km track 100 Stk. turnouts 10% of tamping budget 75% of tamping budget 15% of tamping budget

  29. Summary Stable and cheap ballasted trackis possible, if following quality strategies. However, there are preconditions to be fulfilled within (re-)investment: - good sub soil or insertion of sub layer - drainage, drainage, drainage - high quality components ballast, concrete sleepers with under sleeper pads, high quality rails (350 HT) … and all that must be maintained properly.

  30. Summary All strategies focusing on short term savings lead to a remarkable increase of life cycle costs. Long term savings are possible by quality strategies only. But, how to check sustainable strategies? Life Cycle Management

  31. Analysing the trends of all track data allows forecasting the future maintenance demand. Whenever the future maintenance demand is known, total life cycle cost can be calculated depending on the service life of track. For a certain service life average annual costs are a minimum  optimum point of time of re-investment Life Cycle Management Life Cycle Management allows to check projects, whether they are economic or not:

  32. Life Cycle Management Life Cycle Management – an example What do we know from a specific track section? 50 metres further 200 metres further

  33. Life Cycle Management TrackPROPHET – track alignment • The prognosis work from the time slot having precise data • back to the past to the point of time of track installation and • further to the future knowing the change of the b-rate over time ? slow order As such prognosis can be done for all track work the entire working cycle can be calculated by analysing different recording car signals The prognosis show possible service lives but cannot define the economical one. The economical service life of track and thus the optimal point of time of re-investment can be calculated using the monitoring of the annuities(= average annual dynamic costs of track)

  34. Life Cycle Management Economic point of time for re-investment re-investment

  35. Summary • Alig létezik valami ezen a világon, amit valaki ne csinálhatna még rosszabbul, és így ne adhatná el még olcsóbban. Az emberek viszont, akiknek csak az ár számít, azok eme üzelmek áldozatává válnak. Értelmetlen dolog valamiért túl sokat fizetni, de még rosszabb, valamiért kevesebbet fizetni. Ha túl sokat fizetnek, veszítenek egy bizonyos összeget. Ez minden. De ha túl keveset fizetnek, néha mindent elvesztenek, mert a megvásárolt áru nem tudja betölteni rendeltetését. A gazdaság törvénye megtiltja, hogy kevés pénzért nagy értéket kapjunk. Ha a legolcsóbb árajanlatot fogadjuk el, fenn áll a rizikó, hogy az nem működik, és ezt bele kell kalkulálnunk az árba. És ha ezt tesszük, akkor lenne elég pénzünk arra is, hogy egy jobb árut vegyünk meg. • John Ruskin(1819–1900, Oxford első gazdasági tanszékének egyetemi tanára)

  36. Technische Universität GrazInstitut für Eisenbahnwesen und Verkehrswirtschaft KÖSZÖNÖM A FIGYELMET! Peter Veit Telephone: 0043 316 873 6217  email: peter.veit@tugraz.at  www.ebw.tugraz.at

More Related