1 / 46

Performance of Circulation Transmission (Sub_BC) in 20MHz and 40MHz MIMO Systems

Performance of Circulation Transmission (Sub_BC) in 20MHz and 40MHz MIMO Systems. (Other documents: IEEE 04/934r2, 04/1026r0, 04/1105/r0, 04/1163r1). Jeng-Hong Chen (jhchen2@winbond.com) Pansop Kim (pkim@winbond.com) Winbond Wireless Design Center Torrance, CA, USA October 2004.

haven
Download Presentation

Performance of Circulation Transmission (Sub_BC) in 20MHz and 40MHz MIMO Systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Performance of Circulation Transmission (Sub_BC) in 20MHz and 40MHzMIMO Systems (Other documents: IEEE 04/934r2, 04/1026r0, 04/1105/r0, 04/1163r1) Jeng-Hong Chen (jhchen2@winbond.com) Pansop Kim (pkim@winbond.com) Winbond Wireless Design Center Torrance, CA, USA October 2004 Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  2. Generalized Sub-Carrier Based Circulation (Sub_BC) Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  3. Summary I: Alamouti or SMX v.s. CSMX (Sub_BC) • Sub_BC outperforms Alamouti (Rate=1) in PER • Sub_BC without one OFDM symbol decoding (STBC) delay • The transmit diversity gain (up to 8dB at 10% PER or more at 1% PER in channel B) from CSMX over SMX will • reduce the required high EVM at TX • reduce the required high SNR at RX • Sub_BC can be implemented to 2xN Alamouti (Rate=1) • For example: 2xN ALA v.s. 2(M)xN CALA in 04/934r2. • Rate 4(M)xN, M>4 can be implemented to relax the required SNR to support high data rates with four spatial streams if necessary. Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  4. Summary II: Sub_BC v.s. Beamforming (BF) • Do not require feedback of CSI from RX to TX • Do not require that the channel is reciprocal • All MAC/PHY feedback modes required for BF in IEEE-04/889r0 can be eliminated. • Simpler MAC without feedback modes greatly improves the MAC efficiency (i.e., throughput) and complexity. Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  5. Simulation Results • Part I: 20MHz, 48 data subcarriers, 3D Interleaver • I.1.1: Alamouti v.s. 1(M) CSMX, channel B • I.1.2: Alamouti v.s. 1(M) CSMX, channel E • I.2.1: SMX v.s. CSMX, channel B • I.2.2: SMX v.s. CSMX, channel E • Part II: 40MHz, 108 data subcarriers, 3D-A Interleaver • II.1.1: Alamouti v.s. 1(M) CSMX, channel B • II.1.2: Alamouti v.s. 1(M) CSMX, channel E • II.2.1: SMX v.s. CSMX, channel B • II.2.2: SMX v.s. CSMX, channel E Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  6. Part I.1.1: Alamouti vs. 1(M) CSMX, channel B 2x2 Alamouti vs. 1(M)x2 CSMX 2x3 Alamouti vs. 1(M)x3 CSMX 2x4 Alamouti vs. 1(M)x4 CSMX 20MHz, 3D interleaver RX Ant. Rate=1 Rate=1 TX Ant. RX Ant. Circulation Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  7. 2x2 Alamouti vs. 1(M)x2 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  8. 2x3 Alamouti vs. 1(M)x3 CSMX • 1(M) Circulation is easy • to implement • PER performance of • 1(M)xN Circulation is • better than 2xN ALA. Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  9. 2x4 Alamouti vs. 1(M)x4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  10. Part I.1.2: Alamouti vs. 1(M) CSMX, channel E 2x2 Alamouti vs. 1(M)x2 CSMX 2x3 Alamouti vs. 1(M)x3 CSMX 2x4 Alamouti vs. 1(M)x4 CSMX 20MHz, 3D interleaver RX Ant. Rate=1 Rate=1 TX Ant. RX Ant. Circulation Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  11. 2x2 Alamouti vs. 1(M)x2 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  12. 2x3 Alamouti vs. 1(M)x3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  13. 2x4 Alamouti vs. 1(M)x4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  14. Part I.2.1: SMX vs. CSMX, channel B 2x2 SMX vs. 2(3)x2, 2(4)x2 CSMX 2x3 SMX vs. 2(3)x3, 2(4)x3 CSMX 2x4 SMX vs. 2(3)x4, 2(4)x4 CSMX 3x3 SMX vs. 3(4)x3 CSMX 3x4 SMX vs. 3(4)x4 CSMX 20MHz, 3D interleaver RX Ant. Rate TX Ant. RX Ant. Circulation Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  15. 2(M)X2 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  16. 2(M)X3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  17. 2(M)X4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  18. 3(M)X3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  19. 3(M)X4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  20. Part I.2.2: SMX vs. CSMX, channel E 2x2 SMX vs. 2(3)x2, 2(4)x2 CSMX 2x3 SMX vs. 2(3)x3, 2(4)x3 CSMX 2x4 SMX vs. 2(3)x4, 2(4)x4 CSMX 3x3 SMX vs. 3(4)x3 CSMX 3x4 SMX vs. 3(4)x4 CSMX 20MHz, 3D interleaver RX Ant. Rate TX Ant. RX Ant. Circulation Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  21. 2(M)X2 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  22. 2(M)X3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  23. 2(M)X4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  24. 3(M)X3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  25. 3(M)X4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  26. Part II.1.1: Alamouti vs. 1(M) CSMX, channel B 2x2 Alamouti vs. 1(M)x2 CSMX 2x3 Alamouti vs. 1(M)x3 CSMX 2x4 Alamouti vs. 1(M)x4 CSMX 40MHz, 3D-A interleaver RX Ant. Rate=1 Rate=1 TX Ant. RX Ant. Circulation Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  27. 2x2 Alamouti vs. 1(M)x2 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  28. 2x3 Alamouti vs. 1(M)x3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  29. 2x4 Alamouti vs. 1(M)x4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  30. Part II.1.2: Alamouti vs. 1(M) CSMX, channel E 2x2 Alamouti vs. 1(M)x2 CSMX 2x3 Alamouti vs. 1(M)x3 CSMX 2x4 Alamouti vs. 1(M)x4 CSMX 40MHz, 3D-A interleaver RX Ant. Rate=1 Rate=1 TX Ant. RX Ant. Circulation Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  31. 2x2 Alamouti vs. 1(M)x2 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  32. 2x3 Alamouti vs. 1(M)x3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  33. 2x4 Alamouti vs. 1(M)x4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  34. Part II.2.1: SMX vs. CSMX, channel B 2x2 SMX vs. 2(3)x2, 2(4)x2 CSMX 2x3 SMX vs. 2(3)x3, 2(4)x3 CSMX 2x4 SMX vs. 2(3)x4, 2(4)x4 CSMX 3x3 SMX vs. 3(4)x3 CSMX 3x4 SMX vs. 3(4)x4 CSMX 40MHz, 3D-A interleaver RX Ant. Rate TX Ant. RX Ant. Circulation Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  35. 2(M)X2 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  36. 2(M)X3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  37. 2(M)X4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  38. 3(M)X3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  39. 3(M)X4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  40. Part II.2.2: SMX vs. CSMX, channel E 2x2 SMX vs. 2(3)x2, 2(4)x2 CSMX 2x3 SMX vs. 2(3)x3, 2(4)x3 CSMX 2x4 SMX vs. 2(3)x4, 2(4)x4 CSMX 3x3 SMX vs. 3(4)x3 CSMX 3x4 SMX vs. 3(4)x4 CSMX 40MHz, 3D-A interleaver RX Ant. Rate TX Ant. RX Ant. Circulation Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  41. 2(M)X2 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  42. 2(M)X3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  43. 2(M)X4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  44. 3(M)X3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  45. 3(M)X4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics

  46. Thank you!! The dream of 11n greedy data rates comes at extreme cost of required SNR (EVM) if challenged in the real MIMO channels. The proposed circulation transmission explores optimal antenna diversities without feedback, relax the required SNR, and make the speedy dream come true. Jeng-Hong Chen, Pansop Kim, Winbond Electronics

More Related