460 likes | 613 Views
Performance of Circulation Transmission (Sub_BC) in 20MHz and 40MHz MIMO Systems. (Other documents: IEEE 04/934r2, 04/1026r0, 04/1105/r0, 04/1163r1). Jeng-Hong Chen (jhchen2@winbond.com) Pansop Kim (pkim@winbond.com) Winbond Wireless Design Center Torrance, CA, USA October 2004.
E N D
Performance of Circulation Transmission (Sub_BC) in 20MHz and 40MHzMIMO Systems (Other documents: IEEE 04/934r2, 04/1026r0, 04/1105/r0, 04/1163r1) Jeng-Hong Chen (jhchen2@winbond.com) Pansop Kim (pkim@winbond.com) Winbond Wireless Design Center Torrance, CA, USA October 2004 Jeng-Hong Chen, Pansop Kim, Winbond Electronics
Generalized Sub-Carrier Based Circulation (Sub_BC) Jeng-Hong Chen, Pansop Kim, Winbond Electronics
Summary I: Alamouti or SMX v.s. CSMX (Sub_BC) • Sub_BC outperforms Alamouti (Rate=1) in PER • Sub_BC without one OFDM symbol decoding (STBC) delay • The transmit diversity gain (up to 8dB at 10% PER or more at 1% PER in channel B) from CSMX over SMX will • reduce the required high EVM at TX • reduce the required high SNR at RX • Sub_BC can be implemented to 2xN Alamouti (Rate=1) • For example: 2xN ALA v.s. 2(M)xN CALA in 04/934r2. • Rate 4(M)xN, M>4 can be implemented to relax the required SNR to support high data rates with four spatial streams if necessary. Jeng-Hong Chen, Pansop Kim, Winbond Electronics
Summary II: Sub_BC v.s. Beamforming (BF) • Do not require feedback of CSI from RX to TX • Do not require that the channel is reciprocal • All MAC/PHY feedback modes required for BF in IEEE-04/889r0 can be eliminated. • Simpler MAC without feedback modes greatly improves the MAC efficiency (i.e., throughput) and complexity. Jeng-Hong Chen, Pansop Kim, Winbond Electronics
Simulation Results • Part I: 20MHz, 48 data subcarriers, 3D Interleaver • I.1.1: Alamouti v.s. 1(M) CSMX, channel B • I.1.2: Alamouti v.s. 1(M) CSMX, channel E • I.2.1: SMX v.s. CSMX, channel B • I.2.2: SMX v.s. CSMX, channel E • Part II: 40MHz, 108 data subcarriers, 3D-A Interleaver • II.1.1: Alamouti v.s. 1(M) CSMX, channel B • II.1.2: Alamouti v.s. 1(M) CSMX, channel E • II.2.1: SMX v.s. CSMX, channel B • II.2.2: SMX v.s. CSMX, channel E Jeng-Hong Chen, Pansop Kim, Winbond Electronics
Part I.1.1: Alamouti vs. 1(M) CSMX, channel B 2x2 Alamouti vs. 1(M)x2 CSMX 2x3 Alamouti vs. 1(M)x3 CSMX 2x4 Alamouti vs. 1(M)x4 CSMX 20MHz, 3D interleaver RX Ant. Rate=1 Rate=1 TX Ant. RX Ant. Circulation Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2x2 Alamouti vs. 1(M)x2 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2x3 Alamouti vs. 1(M)x3 CSMX • 1(M) Circulation is easy • to implement • PER performance of • 1(M)xN Circulation is • better than 2xN ALA. Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2x4 Alamouti vs. 1(M)x4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
Part I.1.2: Alamouti vs. 1(M) CSMX, channel E 2x2 Alamouti vs. 1(M)x2 CSMX 2x3 Alamouti vs. 1(M)x3 CSMX 2x4 Alamouti vs. 1(M)x4 CSMX 20MHz, 3D interleaver RX Ant. Rate=1 Rate=1 TX Ant. RX Ant. Circulation Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2x2 Alamouti vs. 1(M)x2 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2x3 Alamouti vs. 1(M)x3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2x4 Alamouti vs. 1(M)x4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
Part I.2.1: SMX vs. CSMX, channel B 2x2 SMX vs. 2(3)x2, 2(4)x2 CSMX 2x3 SMX vs. 2(3)x3, 2(4)x3 CSMX 2x4 SMX vs. 2(3)x4, 2(4)x4 CSMX 3x3 SMX vs. 3(4)x3 CSMX 3x4 SMX vs. 3(4)x4 CSMX 20MHz, 3D interleaver RX Ant. Rate TX Ant. RX Ant. Circulation Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2(M)X2 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2(M)X3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2(M)X4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
3(M)X3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
3(M)X4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
Part I.2.2: SMX vs. CSMX, channel E 2x2 SMX vs. 2(3)x2, 2(4)x2 CSMX 2x3 SMX vs. 2(3)x3, 2(4)x3 CSMX 2x4 SMX vs. 2(3)x4, 2(4)x4 CSMX 3x3 SMX vs. 3(4)x3 CSMX 3x4 SMX vs. 3(4)x4 CSMX 20MHz, 3D interleaver RX Ant. Rate TX Ant. RX Ant. Circulation Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2(M)X2 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2(M)X3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2(M)X4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
3(M)X3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
3(M)X4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
Part II.1.1: Alamouti vs. 1(M) CSMX, channel B 2x2 Alamouti vs. 1(M)x2 CSMX 2x3 Alamouti vs. 1(M)x3 CSMX 2x4 Alamouti vs. 1(M)x4 CSMX 40MHz, 3D-A interleaver RX Ant. Rate=1 Rate=1 TX Ant. RX Ant. Circulation Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2x2 Alamouti vs. 1(M)x2 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2x3 Alamouti vs. 1(M)x3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2x4 Alamouti vs. 1(M)x4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
Part II.1.2: Alamouti vs. 1(M) CSMX, channel E 2x2 Alamouti vs. 1(M)x2 CSMX 2x3 Alamouti vs. 1(M)x3 CSMX 2x4 Alamouti vs. 1(M)x4 CSMX 40MHz, 3D-A interleaver RX Ant. Rate=1 Rate=1 TX Ant. RX Ant. Circulation Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2x2 Alamouti vs. 1(M)x2 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2x3 Alamouti vs. 1(M)x3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2x4 Alamouti vs. 1(M)x4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
Part II.2.1: SMX vs. CSMX, channel B 2x2 SMX vs. 2(3)x2, 2(4)x2 CSMX 2x3 SMX vs. 2(3)x3, 2(4)x3 CSMX 2x4 SMX vs. 2(3)x4, 2(4)x4 CSMX 3x3 SMX vs. 3(4)x3 CSMX 3x4 SMX vs. 3(4)x4 CSMX 40MHz, 3D-A interleaver RX Ant. Rate TX Ant. RX Ant. Circulation Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2(M)X2 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2(M)X3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2(M)X4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
3(M)X3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
3(M)X4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
Part II.2.2: SMX vs. CSMX, channel E 2x2 SMX vs. 2(3)x2, 2(4)x2 CSMX 2x3 SMX vs. 2(3)x3, 2(4)x3 CSMX 2x4 SMX vs. 2(3)x4, 2(4)x4 CSMX 3x3 SMX vs. 3(4)x3 CSMX 3x4 SMX vs. 3(4)x4 CSMX 40MHz, 3D-A interleaver RX Ant. Rate TX Ant. RX Ant. Circulation Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2(M)X2 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2(M)X3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
2(M)X4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
3(M)X3 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
3(M)X4 CSMX Jeng-Hong Chen, Pansop Kim, Winbond Electronics
Thank you!! The dream of 11n greedy data rates comes at extreme cost of required SNR (EVM) if challenged in the real MIMO channels. The proposed circulation transmission explores optimal antenna diversities without feedback, relax the required SNR, and make the speedy dream come true. Jeng-Hong Chen, Pansop Kim, Winbond Electronics