620 likes | 700 Views
DARWIN in SPACE The Quest for LIFE beyond the Solar System. Stockholm Observatory (6th floor). Contributors. Very Many People. Robin Laurance [1999] Jean-Marie Mariotti [1998]. Announcement. Towards Other Earths 22 – 25 April 2003 Heidelberg, Germany
E N D
DARWIN in SPACE The Quest for LIFE beyond the Solar System Stockholm Observatory (6th floor)
Contributors Very Many People... Robin Laurance [1999] Jean-Marie Mariotti [1998] Announcement Towards Other Earths 22 – 25 April 2003 Heidelberg, Germany web page: www.mpia.de/DARWIN e-mail: darwin@mpia.de
Outline Interdisciplinary Talk Astrophysics Biology Chemistry Philosophy... Introduction - Formation of Stars and Planets Scientific Goals Statement of the Problem Adopted Solution Current Developments and Implementation Look into the Future
DARWIN … is a vessel Detecting and Analysing Remote Worlds with Interferometric Nulling
Theory of Star & Planet Formation * * 1 AU = 150 Million km 1 pc = 200 000 AU 1 pc = 3 lightyears
Observational Evidence - Newly Formed Star supersonic plasma jet protoplanetary disk + hidden star Hubble Space Telescope
Observational Evidence for exo-Planets Observing the STARS P = 1 yr Earth: 100 000 km/h Sun: 0.3 km/h 1 AU M sin i
Observational Evidence for exo-Planets:observing the Stars 1995: THE Breakthrough – 51 Peg 100 50 0 -50 -100 V (m/s) Mayor & Queloz 1995 Nature 378, 355 0 0.5 1 Phase
Observational Evidence for exo-Planets: observing the Stars
Observational Evidence for exo-Planets: Observing the Stars Planetary Hypothesis = true Planetary Mass = 0.7 MJupiter Planetary Radius = 1.4 RJupiter I (%) 100 99 98 HD 209458 - HST -0.1 0.0 0.1 t – t0 (days)
2002 >100 exos M = O(MJupiter) ``Hot Jupiters´´ http://exoplanets.org/
Mass Distribution Function of Exos => Existence of Many Earth-like ?
...does not provide this Radial Velocity Technique
Stating the GOALS [ 1 ] find Earth like Planets [ 2 ] look for signs of Life ?...piece of cake...?
[ 1 ] Finding exo-Earths Short Lifetime Brown Dwarfs Different Stellar Temperatures – needs Variable Resolution
[ 2 ] Identifying LIFE What does ALL Life DO? Origin of Life? Definition of Life? Life Produces WASTE !
Statement of the Problem Earth like planet ? with LIFE? 51 Pegasi
Possible Solutions – Possible Techniques • Radial Velocity: NOT feasible (9 cm/s; contamination • by convection and big planets) • Astrometry: feasible from SPACE (<3 marcsec) • Occultation: feasible from SPACE (<0.01%) • Micro Lensing: single event (hours; little information) • …needs observatories in SPACE!
Selection of Spectral Region Scattered Stellar Radiation Planetary Thermal Emission log10 => Space! Visible InfraRed
Selection of Observational Method Two (known) possibilities: • Coronograph in Space • Telescope > 30 m • NOT Realistic! • New Concept • “Nulling’’ Interferometer in Space • Telescopes = 1.5 - 3.5 m • Base Lines = 30 - 500 m • Feasible! this is it!
Interferometry We gain resolution... So, what do we loose? Image information content
D Filled aperture D: contains all spatial frequencies up to 1/D => Image of the source B d/2 Interferometer B: picks out 1 spatial frequency 1/B in coherent field of view 1/d Example:l = 10 mm, B = 200 m, d = 2 m Resolution = 10 milliarcsec Field of view = 1 arcsec
Nulling Interferometer: Point Sources simplest case: 2 element Bracewell interferometer to``null´´ stellar radiation e.g. at 10 pc distance Sun m10 mm= 3.6 (1.6 Jy)* Earth m10 mm= 20.7(0.23 mJy) = star on optical axis q = 0 ``flat bottom´´ High Rejection Rate: > 105 *1 Jy = 10-26 W m-2 Hz-1
nulled Sun Venus Earth DARWIN Simulation of Solar System at 10 pc distance Date: January 1, 2001 Ecliptic inclined by 30° Mars Mennesson & Mariotti (1997) WHAT is observed (1) Multi-Epoch Imaging Discovery of Earth like exo-Planets
WHAT is observed (2)Spectroscopy CO2 CH4 H2O O3 …. • Physics & Chemistry of Planetary Atmospheres IR Spektra – Fingerprints of the Planets • IR emission: 300K BB • continuum radiation • IR absorption: • spectral lines
6 8 10 12 14 16 18 The Living Atmosphere THE BIOmarkers! Venus, Earth & Mars Intensity CO2 O3 H2O H2O Sagan et al. 1993 Nature 365, 715 Wavelength (mm)
Oxygen Photosynthesis 2H2O + CO2 + 8hn CH2O + O2 + H2O O2 O2 + O + M O3 + M O3 6 8 10 12 14 16 18 wavelength (m) The Search for Biospheres Life on Earth as a reference: C-based chemistry in H2O solution ….produces Oxygen
Oxygen Production = Life? same processes that produce abiotic O2destroy O3 (radicals from H2O photolysis)or mask the O3 signature (CO2 absorption) Claim: photochemistry CANNOT reproduce triple signature of oxygen photosynthesis O3 - CO2 - H2O Selsis et al. 2002, Astron. & Astrophys. 388, 985
DARWIN 2 Three-DACs (Laurance) = 6 Telescopes (Free Flyers) 1 Hub (Beam Combiner) + 1 Master Satellite IRSI InfraRed Space Interferometer www.esa.int/home/darwin/
Orbit of DARWIN @ Sun-Earth L2 toward the Sun toward the Sun top view 500.000 km side view
Noise Control - Backgrounds Stellar Leaks Zodiacal Background Exo-Zodi Photon Noise from Planet
Target Selection • Signal-to-Noise(S/N) (t int)Stellar Leak~LStarD2 RPlanet- 4 optimised systems: - LowLStar : Cool Stars (M, K) - Nearby: < 100 pc - Big Planets:> 0.1 RTellus - Not in (close)Stellar Binaries • Angular Resolution(for planet in Habitable Zone) • Planet = 100 (LStar / LSun)1/2 (1/D10pc) [mas] • adjustableconfiguration (unresolved stellar disk)
someMajor Performance Requirements Nulling of on-axis-Star > 105 Baseline Accuracy 1 cm (rms) Optical Path Difference 20 nm (rms) Telescope Pointing 24 mas (rms) Amplitude Matching < 10-2
Ongoing Developments & Future Planning Joint Mission 22 april 2002 GENIE (VLTI) 2003 COROT (occultation) 2004 SMART-2 (ff, metrol) 2006 Eddington (occult.) 2008 Kepler (NASA) 2009 JWST (``NGST´´) 2010
Ongoing Developments & Future Planning Conclusions: [1] find exo-Earths [2] find signs of Life Darwin can do it! Launch on Ariane-5 5E/CB 2013 - 2015
Towards Other Earths Darwin/TPF and the Search for Extrasolar Terrestial Planets 22 – 25 April 2003 Heidelberg, Germany web page: www.mpia.de/DARWIN e-mail: darwin@mpia.de
UV UV UV escape H2O CO2 CO2 OH CO CO H O O O O2 O2 O2 abiotic = photochemical O2 production
Abotic Production of O2 by H2O Photolysis Selsis et al. 2002, Astron. & Astrophys. 388, 985 CO2 Intensity H2O H2O O3 Wavelength (mm)
Cyanobacteria the oxygen producers oxygenic photosynthesis: 2H2O + CO2 + hn CH2O + O2 + H2O
The late Rise of Oxygen(2.2-1.9 Gyrs ago) PO2 < 1 % P.A.L PO2 > 15 % P.A.L 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.6 0.8 Time (Gyrs) Holland, 1993
50 mbar of CO2 1 bar of CO2 0,3 mbar of CO2 water escape Solar luminosity CO2 greenhouse effect not anymore efficient Temporal evolution of the Habitable Zone Kasting et al. 1993 4 2 time (Gyr) 0 -2 -4 0,5 1,0 1,5 2,0 2,5 3,0 3,5 AU
CH4 required for surface liquid water present CO2 CO2 > present CO2 O2 < 1 % present O2 O2 > 15 % present O2 Temporal evolution of the Sun