1 / 45

Chapter 7 Electrochemistry

Chapter 7 Electrochemistry. Strong electrolyte. Real electrolyte. Weak el ectrolyte. Potential electrolyte. 7.1 Thermodynamic Properties of Electrolyte Solutions. 7.1.1 Electrolyte. NaNO 3 z + = 1 | z - |= 1 1-1 ; BaSO 4 z + = 2 | z - |= 2 2-2 ;

hayes-snow
Download Presentation

Chapter 7 Electrochemistry

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 7 Electrochemistry Strong electrolyte Real electrolyte Weak el ectrolyte Potential electrolyte 7.1 Thermodynamic Properties of Electrolyte Solutions 7.1.1 Electrolyte NaNO3z+=1 |z-|=1 1-1; BaSO4z+=2 |z-|=2 2-2; Na2SO4 z+=1 |z-|=2 1-2; Ba(NO3)2 z+=2 |z-|=1 2-1。

  2. 7.1.2 Chemical Potential of Electrolyte and Ions B = ++ + 

  3. dT=0, dp=0, dnA=0 B = ++ + 

  4. ideal solution real solution 7.1.3 Activity and Activity Coefficient

  5. 7.1.4 Mean Activity of Ions and Mean Activity Coefficients

  6. 7.1.5 The Debye - Hückel Limiting Law Ionic atmosphere

  7. H2O b<0.01~0.001mol·kg-1 I — Ionic Strength

  8. 7.1.6 Ionic Strength I<0.01mol·kg-1

  9. 7.2 Conductive Properties of Electrolyte Solutions 7.2.1 Conductance G Conductance;unit Simens S,1S=1Ω-1。  Resistivity ; Ω·m.   Conductivity ; S·m-1.  =K(l/A)G K Cell constant

  10. Λm(K2SO4)= 0.02485 S·m2·mol-1 Λm( K2SO4)= 0.01243 S · m2 · mol-1 7.2.2 Molar Conductance Λm unit S · m2 · mol-1。

  11. 400 300 200 100 HCl 80 H2SO4 m/(Scm2 mol-1) 60 k/(Sm-1) KOH NaOH KCl 40 AgNO3 20 MgSO4 CH3COOH CH3COOH 0 0.5 1.0 1.5 0 5 10 14 c/(moldm-3) m  c   c cB=0 molar conductivity of infinite dilution 7.2.3 Concentration dependence of  andΛm

  12. At equilibrium 7.2.4 Independent Migration of Ion 7.2.5. Electrolytic Equilibrium of Weak Electrolytes

  13. HOAc H+ + OAc- au=ubu/b=(1-α)u b/b 

  14. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Metal Metal 7.3 Electrochemical system

  15. Metal 1 Metal 2 + + + + + + + + + + Contact potential

  16. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Liquid-junction potential (diffusion potential)

  17. 7.4 Equilibrium electrochemistry 7.4.1 Reversible cell (1) Electrode reactions and cell reaction are reversible (2) I  0 (equilibrium)

  18. 7.4.2 The Cell Potentials of Reversible Cell

  19. ---Standard Cell Potentials 7.4.3 The Nernst Equation

  20. 7.4.4 Standard Electrode Potential Standard Hydrogen Electrode ---SHE H+ [a(H+) =1 ] | H2 (p=100kPa) | Pt E=0 SHE  electrode in question (reduction)

  21. Table 11-1 25℃时某些电极的标准电极电势 (p=100kPa)

  22. For example Cl- -(a)|Cl2|Pt: Oxidation state + 2e-  Reduction state EMF = E (R,Reduction)- E (L,Reduction)

  23. Temperature coefficient of cell 7.5 Application of EMF Measurements 7.5.1 Determination of thermodynamics quantities ΔrGm,ΔrSm andΔrHm ΔrGm= - zFEMF

  24. 7.5.2 Determination of γ±

  25. -OH HO- Q QH2 7.5.3 Determination of pH Pt|H2(p )|solution(pH=x) |KCl (a)|Hg2Cl2|Hg QQH2 H+|Q,QH2|Pt Q[a(Q)]+2H+[a(H+)]+2e-QH2[a(QH2)] a(Q)≈a(QH2) 25℃,E=(0.6997-0.05916pH) V

  26. 7.5.4 Determination ofK and Ksp 7.5.5 Determination of reaction direction ΔrGm=-ZFEMF< 0

  27. a c M  c a Ea M Ec M+ + e- M M++e Cathode process υc; anode process υa; 7.6 kinetics of electrochemical system 7.6.1 Rate of electrochemical reaction

  28. v - Rate of electrochemical reaction molm-2s-1 Current density j j=ZFυ j0:exchange current density

  29. { } { }   { c,e} { a} {a} {c} { c} { a ,e}   {e} { } { e} { }   { c,e} { a} {c} {a} { c} { a,e}   {j} {j} polarization curve (a) electrolytic cell (b)chemical electric source 7.6.2 Polarization and Overpotential Overpotential: ηa —anode overpotential ηc—anode overpotential

  30. Ag+ c0 Ag c'  M+ + e- M Diffusion layer (1). Diffusion overpotential (2). Electrochemical overpotential

  31. + — Power supply I anode(+) cathode(-) Pt Pt O2 H2 H2O H2O 7.6.3 Electrolytic cell (-)Pt| H2|OH-(H2O)| O2(p) |Pt(+)

  32. _ 外电源 + 电阻 I R V 伏特计 A 电流计 Pt  V  Vd KOH KOH Decomposition voltage Theory decomposition voltage Real decomposition voltage Δ (real)=Δ (theory) + (ηa+|ηc|) + IR

  33. Negative electrode:Zn + 2NH4Cl  Zn(NH3)2Cl2 + 2H++ 2e- positive electrode :2MnO2 + 2H+ + 2e- 2MnOOH Cell reaction:Zn + 2MnO2 + 2NH4Cl Zn(NH3)2Cl2 + 2MnOOH 7.7 Power production and corrosion 7.7.1 Dry Cell Zn|NH4Cl|MnO2|C

  34. Negative electrode :Pb + H2SO4  PbSO4 + 2H+ + 2e- positive electrode : PbO2 + H2SO4 + 2H+ + 2e- PbSO4 + 2H2O Cell reaction:PbO2 + Pb + 2H2SO4 2PbSO4 + 2H2O 11.7.2 Storage Cell Pb|H2SO4(ρ=1.28gcm-3)|PbO2

  35. Negative electrode: 2Zn + 4OH- 2Zn(OH)2 + 4e- positive electrode : Ag2O2 + 2H2O+ 4e- 2Ag+ 4OH- Cell reaction:2Zn+ Ag2O2 + 2H2O 2Ag+ 2Zn(OH)2 11.7.3.Silver-zinc Cell Zn|KOH(ωB=0.40)|Ag2O|Ag

  36. 7.7.4. Fuel cell M|H2(g)|KOH|O2(g)|M

  37. Efficiency of Chemical Electric Source

  38. 7.7.5 Electrochemical corrosion

  39. M+ M+ 2H+ 2H+ H2 H2 2e 2e M M2 M1 Anode process: FeFe2++2e- Cathode process: (i)2H++2e-H2↑ (ii)O2+4H++4e-2H2O (i) cell reaction:Fe+2H+Fe2++H2 (ii) cell reaction:Fe+(1/2)O2+2H+Fe2++H2O

  40. { c,e} S {)} { a,e} I

More Related