660 likes | 1.31k Views
Mathematics. Session. Cartesian Coordinate Geometry And Straight Lines. Session Objectives. Cartesian Coordinate system and Quadrants Distance formula Area of a triangle Collinearity of three points Section formula Special points in a triangle Locus and equation to a locus
E N D
Session Cartesian Coordinate Geometry And Straight Lines
Session Objectives • Cartesian Coordinate system and Quadrants • Distance formula • Area of a triangle • Collinearity of three points • Section formula • Special points in a triangle • Locus and equation to a locus • Translation of axes - shift of origin • Translation of axes - rotation of axes
Y 3 2 +ve direction 1 X’ O X -4 -3 -2 -1 2 3 4 1 -1 Origin +ve direction -ve direction -2 -ve direction -3 Y’ Coordinates Y-axis : Y’OY X-axis : X’OX
Y 3 2 1 X’ O X -4 -3 -2 -1 2 3 4 1 -1 -2 (?,?) -3 Y’ Coordinates (2,1) Abcissa Ordinate (-3,-2)
Y 3 2 1 X’ O X -4 -3 -2 -1 2 3 4 1 -1 -2 -3 Y’ Coordinates (2,1) Abcissa Ordinate (-3,-2) (4,?)
Y 3 2 1 X’ O X -4 -3 -2 -1 2 3 4 1 -1 -2 -3 Y’ Coordinates (2,1) Abcissa Ordinate (-3,-2) (4,-2.5)
Y X’ O X Y’ Quadrants (-,+) (+,+) II I IV III (+,-) (-,-)
Y (-,+) (+,+) II I X’ O X IV III (+,-) (-,-) Y’ Quadrants Ist? IInd? Q : (1,0) lies in which Quadrant? A : None. Points which lie on the axes do not lie in any quadrant.
Y Q(x2, y2) y2-y1 y2 N y1 P(x1, y1) x2 x1 (x2-x1) X’ O X Y’ Distance Formula PQN is a right angled . PQ2 = PN2 + QN2 PQ2 = (x2-x1)2+(y2-y1)2
Distance From Origin Distance of P(x, y) from the origin is
Applications of Distance Formula Parallelogram
Applications of Distance Formula Rhombus
Applications of Distance Formula Rectangle
A(x1, y1) Y C(x3, y3) B(x2, y2) M L N X’ O X Y’ Area of a Triangle Area of ABC = Area of trapezium ABML + Area of trapezium ALNC - Area of trapezium BMNC
A(x1, y1) Y C(x3, y3) B(x2, y2) M L N X’ O X Area of trapezium ABML + Area of trapezium ALNC - Area of trapezium BMNC Y’ Area of a Triangle Sign of Area : Points anticlockwise +ve Points clockwise -ve
Area of Polygons Area of polygon with points Ai (xi, yi) where i = 1 to n Can be used to calculate area of Quadrilateral, Pentagon, Hexagon etc.
Collinearity of Three Points Method I : Use Distance Formula a b c Show that a+b = c
Collinearity of Three Points Method II : Use Area of Triangle A (x1, y1) B (x2, y2) C (x3, y3) Show that
Y B(x2, y2) n P(x, y) : K m H A(x1, y1) L N M X’ O X Y’ Section Formula – Internal Division Clearly AHP ~ PKB
Midpoint Midpoint of A(x1, y1) and B(x2,y2) m:n 1:1
Y P(x, y) B(x2, y2) K H A(x1, y1) L N M X’ O X Y’ Section Formula – External Division P divides AB externally in ratio m:n Clearly PAH ~ PBK
A(x1, y1) F E G B(x2, y2) D C(x3, y3) Centroid Intersection of medians of a triangle is called the centroid. Centroid is always denoted by G.
A(x1, y1) F E G B(x2, y2) D C(x3, y3) Centroid Consider points L, M, N dividing AD, BE and CF respectively in the ratio 2:1
A(x1, y1) F E G B(x2, y2) D C(x3, y3) Centroid Consider points L, M, N dividing AD, BE and CF respectively in the ratio 2:1
A(x1, y1) F E G B(x2, y2) D C(x3, y3) Centroid Consider points L, M, N dividing AD, BE and CF respectively in the ratio 2:1
A(x1, y1) F E G B(x2, y2) D C(x3, y3) Centroid Medians are concurrent at the centroid, centroid divides medians in ratio 2:1 We see that L M N G
A(x1, y1) F E G B(x2, y2) D C(x3, y3) Centroid Centroid We see that L M N G
A(x1, y1) F E I B(x2, y2) D C(x3, y3) Incentre Intersection of angle bisectors of a triangle is called the incentre Incentre is the centre of the incircle Let BC = a, AC = b, AB = c AD, BE and CF are the angle bisectors of A, B and C respectively.
A(x1, y1) F E I B(x2, y2) D C(x3, y3) Incentre Similarly I can be derived using E and F also
A(x1, y1) F E I B(x2, y2) D C(x3, y3) Incentre Angle bisectors are concurrent at the incentre
E A(x1, y1) F E B(x2, y2) D C(x3, y3) EA = Excentre opposite A Excentre Intersection of external angle bisectors of a triangle is called the excentre Excentre is the centre of the excircle
E A(x1, y1) F E B(x2, y2) D C(x3, y3) EB = Excentre opposite B Excentre Intersection of external angle bisectors of a triangle is called the excentre Excentre is the centre of the excircle
E A(x1, y1) F E B(x2, y2) D C(x3, y3) EC = Excentre opposite C Excentre Intersection of external angle bisectors of a triangle is called the excentre Excentre is the centre of the excircle
A C O B Cirumcentre Intersection of perpendicular bisectors of the sides of a triangle is called the circumcentre. OA = OB = OC = circumradius The above relation gives two simultaneous linear equations. Their solution gives the coordinates of O.
A H B C Orthocentre Intersection of altitudes of a triangle is called the orthocentre. Orthocentre is always denoted by H We will learn to find coordinates of Orthocentre after we learn straight lines and their equations
H 1 : 2 G O Cirumcentre, Centroid and Orthocentre The circumcentre O, Centroid G and Orthocentre H of a triangle are collinear. G divides OH in the ratio 1:2
Locus – a Definition The curve described by a point which moves under a given condition or conditions is called its locus e.g. locus of a point having a constant distance from a fixed point : Circle!!
Locus – a Definition The curve described by a point which moves under a given condition or conditions is called its locus e.g. locus of a point equidistant from two fixed points : Perpendicular bisector!!
Equation to a Locus The equation to the locus of a point is that relation which is satisfied by the coordinates of every point on the locus of that point Important : A Locus is NOT an equation. But it is associated with an equation
Equation to a Locus Algorithm to find the equation to a locus : Step I : Assume the coordinates of the point whose locus is to be found to be (h,k) Step II : Write the given conditions in mathematical form using h, k Step III : Eliminate the variables, if any Step IV : Replace h by x and k by y in Step III. The equation thus obtained is the required equation to locus
Illustrative Example Find the equation to the locus of the point equidistant from A(1, 3) and B(-2, 1) Solution : Let the point be P(h,k) PA = PB (given) PA2 = PB2 (h-1)2+(k-3)2 = (h+2)2+(k-1)2 6h+4k = 5 equation of locus of (h,k) is 6x+4y = 5
B(0,b) P(h,k) O A(a,0) Illustrative Example A rod of length l slides with its ends on perpendicular lines. Find the locus of its midpoint. Solution : Let the point be P(h,k) Let the lines be the axes Let the rod meet the axes at A(a,0) and B(0,b) h = a/2, k = b/2 Also, a2+b2 = l2 4h2+4k2 = l2 equation of locus of (h,k) is 4x2+4y2 = l2
Y P(x,y) Y X y O’(h,k) x X’ O X Y’ Shift of Origin Consider a point P(x, y) Let the origin be shifted to O’ with coordinates (h, k) relative to old axes Let new P (X, Y) x = X + h, y = Y + k X = x - h, Y = y - k O (-h, -k) with reference to new axes
Illustrative Problem Show that the distance between two points is invariant under translation of the axes Solution : Let the points have vertices A(x1, y1), B(x2, y2) Let the origin be shifted to (h, k) new coordinates : A(x1-h, y1-k), B(x2-h, y2-k) = Old dist.
Y Y Y P(x,y) Y Y Y X X X y X X X’ O X O O O O X’ x X’ Y’ Y’ Y’ Y’ Y’ X’ X’ Rotation of Axes R Consider a point P(x, y) Let the axes be rotated through an angle . Let new P (X, Y) make an angle with the new x-axis