150 likes | 172 Views
Sparsity Control for Robust Principal Component Analysis. Gonzalo Mateos and Georgios B. Giannakis ECE Department, University of Minnesota Acknowledgments : NSF grants no. CCF-1016605, EECS-1002180. Asilomar Conference November 10, 2010. Principal Component Analysis. DNA microarray.
E N D
Sparsity Control for Robust Principal Component Analysis Gonzalo Mateos and Georgios B. Giannakis ECE Department, University of Minnesota Acknowledgments: NSF grants no. CCF-1016605, EECS-1002180 Asilomar Conference November 10, 2010
Principal Component Analysis DNA microarray Traffic surveillance • Motivation: (statistical) learning from high-dimensional data • Principal component analysis (PCA) [Pearson’1901] • Extraction of low-dimensional data structure • Data compression and reconstruction • PCA is non-robust to outliers [Jolliffe’86] • Our goal: robustify PCA by controlling outlier sparsity 2
Our work in context Original Robust PCA `Outliers’ • Contemporary applications • Anomaly detection in IP networks [Huang et al’07], [Kim et al’09] • Video surveillance, e.g., [Oliver et al’99] • Robust PCA • Robust covariance matrix estimators [Campbell’80], [Huber’81] • Computer vision [Xu-Yuille’95], [De la Torre-Black’03] • Low-rank matrix recovery from sparse errors [Wright et al’09] • Huber’s M-class and sparsity in linear regression [Fuchs’99] 3
PCA formulations • Training data: • Minimum reconstruction error: • Dimensionality reduction operator • Reconstruction operator • Maximum variance: • Factor analysis model: Solution: 4
Robustifying PCA Least-trimmed squares (LTS) regression [Rousseeuw’87] LTS-based PCA for robustness (LTS PCA) is the -th order statistic among Trimming constant determines breakdown point • Q: How should we go about minimizing ? (LTS PCA) is nonconvex; existence of minimizer(s)? A: Try all subsets of size , solve, and pick the best • Simple but intractable beyond small problems 5
Modeling outliers • Natural (but intractable) estimator inlier • Introduce auxiliary variables s.t. outlier • Inliers obey ; outliers something else • Inlier noise: are zero-mean i.i.d. random vectors • Remarks • and are unknown • If outliers sporadic, then vector is sparse! 6
LTS PCA as sparse regression • Tuning controls sparsity in , thus number of outliers Proposition 1: If solves (P0) with chosen such that , then solves (LTS PCA) too. • Lagrangian form (P0) • Justifies the model and its estimator (P0); ties sparsity with robustness 7
Just relax! • (P0) is NP-hard relax (P2) • Role of sparsity controlling is central • Q: Does (P2) yield robust estimates ? A: Yap! Huber estimator is a special case
Entrywise outliers Original Robust PCA (P2) Robust PCA (P1) Outlier pixels Entire image rejected Outlier pixels rejected • Use -norm regularization (P1)
Alternating minimization • update: reduced-rank Procrustes rotation • update: coordinatewise soft-thresholding Proposition 2: Alg. 1’s iterates converge to a stationary point of (P1). (P1) 10
Refinements • Options: SCAD [Fan-Li’01], or sum-of-logs [Candes etal’08] • Iterative linearization-minimization of around • Iteratively reweighted version of Alg. 1 • Warm start: solution of (P1) or (P2) • Bias reduction in (cf. weighted Lasso [Zou’06]) • Discard outliers identified in • Re-estimate missing data problem • Nonconvex penalty terms approximate better in (P0) 11
Online robust PCA • Approximation [Yang’95] • At time , do not re-estimate past outlier vectors • Motivation: Real-time data and memory limitations • Exponentially-weighted robust PCA 12
Video surveillance Original PCA Robust PCA `Outliers’ 13 Data: http://www.cs.cmu.edu/~ftorre/
Online PCA in action Angle between C(n) and C • Inliers: • Outliers: • Figure of merit: angle between and 14
Concluding summary Sparsity control for robust PCA LTS PCA as -(pseudo)norm regularized regression (NP-hard) Relaxation(group)-Lassoed PCA M-type estimator Sparsity controlling role of central • Batch and online robust PCA algorithms • i) Outlier identification, ii) Robust subspace tracking • Refinements via nonconvex penalty terms • Tests on real video surveillance data for anomaly extraction • Ongoing research • Preference measurement: conjoint analysis and collaborative filtering • Robustifying kernel PCA and blind dictionary learning 15