370 likes | 648 Views
Stereo Matching Using Loopy Belief Propagation. Li Zhang and Lin Liao April 23, 2004. Outline. Problem setup Matching on benchmark stereo images Matching on structure light stereo images Conclusion. Matching Costs. Birchfield-Tomasi matching cost. Right image. Left image. Piece-wise
E N D
Stereo Matching Using Loopy Belief Propagation Li Zhang and Lin Liao April 23, 2004
Outline • Problem setup • Matching on benchmark stereo images • Matching on structure light stereo images • Conclusion
Matching Costs • Birchfield-Tomasi matching cost Right image Left image
Piece-wise linear segment } Matching Costs • Birchfield-Tomasi matching cost Right image Left image
Separation Cost (Potts model) Let xi, xj be the labels of two adjacent nodes i, j. The separation cost V(xi,xj) is and where ∆I is the image gradient between i and j; T, s, and P are the parameters.
Accelerated Belief Propagation • Propagate message in one direction and update each node immediately • Advantages: • Messages propagate much faster • Do not need to buffer the messages from previous iteration; it’s easier to implement • We implemented both the MAP estimator and the MMSE estimator
Tsukuba image—MAP result Iteration 1
Tsukuba image—MAP result Iteration 2
Tsukuba image—MAP result Iteration 3
Tsukuba image—MAP result Iteration 5
Tsukuba image—MMSE result Iteration 1
Tsukuba image—MMSE result Iteration 3
Tsukuba image—MMSE result Iteration 10
Tsukuba image—MMSE result Iteration 20
Tsukuba image—MMSE result Iteration 30
Tsukuba image—MMSE result Iteration 40
Tsukuba image—MMSE result Iteration 50
Tsukuba image—Parameters Change the separation cost parameter (S) in the Potts model S = 50 Best result S = 500 Over-smoothed S = 5 Under-smoothed
Structure Light Stereo • Richer texture • Larger disparity range ~[0-100]
Bust—MAP result Iteration 1
Bust—MAP result Iteration 2
Bust—MAP result Iteration 3
Bust—MAP result Iteration 5
Bust—MAP result Iteration 10
Bust—MAP result Iteration 20
Bust—MAP result Iteration 30
Bust—MAP result Iteration 40
Bust—MAP result Iteration 50
Bust—BP vs. DP Belief Propagation Dynamic Programming 320x240, 60 labels, 30 sec per iteration 640x480, 120 labels, ~30 sec one pass
Conclusion • BP-MAP works pretty well • BP-MMSE doesn’t work great • BP-MAP doesn’t show dramatic improvement over DP on stereo with dense texture