360 likes | 522 Views
Chapter 1 Introduction to Neurocomputing. 國立雲林科技大學 資訊工程研究所 張傳育 (Chuan-Yu Chang ) 博士 Office: ES 709 TEL: 05-5342601 ext. 4337 E-mail: chuanyu@yuntech.edu.tw. What is Neurocomputing?. Neurocomputing approach Involves a learning process within an ANN
E N D
Chapter 1Introduction to Neurocomputing 國立雲林科技大學 資訊工程研究所 張傳育(Chuan-Yu Chang ) 博士 Office: ES 709 TEL: 05-5342601 ext. 4337 E-mail: chuanyu@yuntech.edu.tw
What is Neurocomputing? • Neurocomputing approach • Involves a learning process within an ANN • 一旦類神經網路訓練完成,該類神經網路即可進行特定的工作。例如pattern recognition • Associated (聯想) • Why can we (human) perform certain tasks much better than a digital computer? • Our brain is organized • 大腦神經(nerve)的傳導速度比電子的速度慢(106)倍,但腦神經具有大量平行的計算能力。(約1011個neuron) • 大腦是一個adaptive, nonlinear, parallel的計算機。
What is Neurocomputing? (cont.) • 類神經網路的主要能力: • 由範例學習(learn by example) • 歸納(generalize) • The NN can classify input patterns to an acceptable level of accuracy even if they were never used during the training process. • 大部分的類神經網路具有類似的特徵: • Parallel computational architecture • Highly interconnected • Nonlinearity output
What is Neurocomputing? (cont.) • Applications of neural networks: • Image processing • Prediction and forecasting • Associative memory • Clustering • Speech recognition • Combinatorial optimization • Feature extraction • …
What is Neurocomputing? (cont.) • 使用neurocomputing解決特定問題的優點: • Fault tolerance • Nonlinear • Adaptive
Course Introduction • Text book • Fredric M. Ham, Principles of Neurocomputing for Science & Engineering, McGRAW-HILL, 2001. • Simon Haykin, Neural Networks-A comprehensive foundation, 2nd Edition. Prentice Hall, 1999
Contents • Introduction to Neurocomputing • Fundamental Neurocomputing Concepts • Activation Function • Adaline and Madaline • Perceptron • Multilayer perceptron • Leaning Rules • Mapping Networks • Associative memory • Backpropagation Learning Algorithm • Counterpropagation • Radial Basis Function Neural Networks
Contents (con’t) • Self-Organizing Networks • Kohonen Self-Organizing Map • Learning Vector Quantization • Adaptive Resonance Theory Neural network • Recurrent Networks and Temporal feedforward Networks • Hopfield Associative Memory • Simulated Annealing • Boltzmann Machine • Time-Delay Neural Networks
Contents (con’t) • Statistical Methods Using Neural Networks • Principal Component Analysis • Independent Component Analysis
Course Requirements • Homeworks • Supervised learning: Digits Recognition • Unsupervised learning: Traveling Salesperson Problem (TSP) • Final Project • Presentation • Implementation and Demonstration • Final Examination
請思考這門課對各位的研究是否有幫助? Does this course helpful to your research?
Historical notes • McCulloch and Pitts (1943) • No training to neurons. • Act as certain logic functions. • Hebb (1949) • Based on a neurobiological viewpoint, describes a learning process. • Hebb stated that information is stored in the connections of neurons and postulated a learning strategy for adjustment of the connection weight. • Rosenblatt (1958) • Proposed the concept of the perceptron
Historical notes (cont.) • Widrow and Hoff (1960) • The Adaline (adaptive linear element) trained by the LMS learning rule. • Minsky and Papert (1969) • Slowed down neural network research in 1969. • Perceptrons have limited capabilities, the XOR problem. • Kohonen and Anderson (1972) • Content-addressable associative memories. • Werbos (1974) • The first description of the backpropagation algorithm for training multilayer feed-forward perceptrons.
Historical notes (cont.) • Little and Shaw (1975) • Use a probabilistic model of a neuron instead of a deterministic one. • Lee (1975) • Presented the fuzzy McCulloch-Pitts neuron mode. • Hopfield (1982) • Proposed a recurrent neural network • The network can store information in a dynamically stable storage and retrieval. • Kohonen (1982) • Presented the self-organizating feature map. • It is an unsupervised, competitive learning, clustering network in which only one neuron is “on” at a time.
Historical notes (cont.) • Oja (1982) • Presented a single linear neuron trained by a normalized Hebbian learning rule that acts as a principal-component analyzer. • The neuron is capable of adaptive extracting the 1st principal eignvector from the input data. • Carpenter and Grossberg (1987) • Developed self-organizing neural networks based adaptive resonance theory (ART) • Sivilotti, Mahowald, and Mead (1987) • The first VLSI realization of neural networks. • Broomhead and Lowe (1988) • First exploitation of radial basis function in designing neural networks.
McCulloch-Pitts neuron • The McCulloch-Pitts neuron is a two-state device. (on/off, binary) • The output of a particular neuron cannot coalesce with output of another neuron; it can branch to another neuron and terminate as an input to that neuron.(個別神經元的輸出無法與其他神經元的輸出合併,但可當成其他神經元的輸入。) • Two types of terminations • Excitatory input • Inhibitory input • There can be any number of inputs to a neuron. .(一個神經元可有任意多個輸入) • Whether the neuron will be on (firing) or off depends on the threshold of the neuron.(但其輸出是由threshold所決定。)
McCulloch-Pitts neuron • Physical assumptions:(基本假設) • The neuron activity is an all-or-nothing process, ie., the activation of the neuron is binary. • A certain fixed number of synapses (>1) must be excited within a period of latent addition for a neuron to be excited. • The only significant delay within the nervous system is synaptic delay. • The activity of any nonzero inhibitory synapse absolutely prevents excitation of the neuron at that time. • The structure of the network does not change with time.
McCulloch-Pitts neuron • Architecture of a McCulloch-Pitts neuron • N excitatory input • M inhibitory input • 1個由threshold決定的輸出y。 • 為滿足前面的假設4, u= S xi w
McCulloch-Pitts neuron • Example 1 • The AND logic function can be realized using the McCulloch-Pitts neuron having two synaptic connections with equal weights of 1 and a threshold q=2.
McCulloch-Pitts neuron • Example 2: • The OR logic function can be realized using the McCulloch-Pitts neuron having two synaptic connections with equal weights of 2 and a threshold q=2.
McCulloch-Pitts neuron • Example 3: • The XOR logic function can be realized using three McCulloch-Pitts neuron having two synaptic connections with equal weights of 2 and a threshold q=2.
Neurocomputing and Neuroscience • Biological neural networks • 神經系統(nervous system)是一個巨大且複雜的神經網路(neural network),大腦是神經系統的中樞,神經系統和各感官器官相連結,傳遞感官訊息給大腦,並且傳送行為命令給反應器官(effectors) 。 • 大腦是由大約1011個神經元所組成,而這些神經元相互連接成子網路,組成所謂的細胞核(nuclei) ,細胞核是由一連串的神經元所組成,具有特定的功能。 • 在大腦中的感官系統(sensory system)和它的子網路,擅於將複雜的感官資訊分解(decompose)成知覺的基本特性。對於不同的知覺會有不同的分解。
Small cell Large cell Neurocomputing and Neuroscience • Fausett 更有效的建構生物的(biological)神經元(neuron)成類神經元(artificial neurons)。大腦和神經系統的其他部分是由許多不同種類的神經元組成,有不同的電子特性、數量、大小、及連接方式。 樹狀突 軸突
Neurocomputing and Neuroscience • 一個生物神經元包含有三個部分: • 樹狀突(dendrites) :收取來自其他神經元的訊號。 • Cell body:用來彙總來自樹狀突及其他神經鍵的訊號。當收到的刺激大於threshold時,神經元將產生一個電能(potential) ,也就是fire,並將此電能沿著axon傳給其他神經元或是目的細胞,例如肌肉。 • 軸突(axon) :藉由神經鍵(synapses)和其他神經元的軸突(axon)相連結。神經鍵(synapses)的數目可能從數百到上萬。 (體幹)
Neurocomputing and Neuroscience • A biological neuron consists of three main components: • Dendrites :receive signals from other neurons。 • Cell body (soma):sums the incoming signals from the dendrites and sums the signals from the numerous synapses on its surface. • Axon :the axons of other neurons connect to the dendrite and cell body surfaces by means of connectors called synapses。The number of synaptic connection from other neurons may range from a few hundred to 10,000. (體幹)
Neurocomputing and Neuroscience Simplified drawing of the synapses
Neurocomputing and Neuroscience • 由於神經元的外表有神經薄膜,因此訊號到達樹狀突時會因時間和距離而迅速衰減。而喪失刺激神經元的能力,除非它們收到來自附近神經元的訊號強化了衰減的訊號。
Neurocomputing and Neuroscience • 如果神經元的輸入無法達到threshold,則輸入訊號將快速衰減,而且不會產生行動電能(potential)。因此,action potential的產生原則是all-or-nothing。 • 輸入強度是表現在每秒產生的action potential數量,而不是action potential的大小。較強的輸入信號會比較弱的輸入信號產生較多的action potential。
Neurocomputing and Neuroscience • Synapses are the points of contact that connect the axon terminals to their targets. • Synapse由下列所組成: • Nerve terminal • Synaptic cleft or gap • Postsynaptic membrane
Classification of neural networks • Supervised learning vs. unsupervised learning