220 likes | 372 Views
Diagnostics and constraints for relativistic electron and ion acceleration in solar flares N. Vilmer LESIA –Observatoire de Paris. Ascona_June 7-11 2005. X/ -ray spectrum. Thermal components. T= 2 10 7 K T= 4 10 7 K. Electron bremsstrahlung. Ultrarelativistic Electron
E N D
Diagnostics and constraints for relativistic electron and ion acceleration in solar flares N. Vilmer LESIA –Observatoire de Paris Ascona_June 7-11 2005
X/ -ray spectrum Thermal components T= 2 10 7 K T= 4 10 7 K Electron bremsstrahlung Ultrarelativistic Electron Bremsstrahlung -ray lines (ions > 3 MeV/nuc) SMM/GRS Phebus/Granat Observations GAMMA1 GRO GONG Pion decay radiation (ions > 100 MeV/nuc) sometimes with neutrons RHESSI Energy range
-ray and neutron event on 03/06/82 • (from Chupp et al, 1987): -Time extended neutron production at the Sun (~ 600s) • First GeV protons accelerated in t <16s at the beginning of the flare • Neutron Emissivity at the Sun: 7.4 1031 E–2.4 Neutrons/MeV/sr for 100<E<2000 MeV • - Spectral slope in agreement with the one deduced from neutron decay proton measurements
24 May solar flare: GOES X9.3, N36 W76 One of the largest neutron event: N>100 MeV= 3.5 1030 n sr-1 Impulsive phase 75 MeV (2nd peak) Extended phase, duration > 8 minutes: High-energy -rays 100 MeV Pion-decay radiation from 2nd peak of the impulsive phase -ray and neutron event on 24/05/90
-ray and neutron event on 24/05/90 From Talon et al., 1993 Debrunner et al 1997 High Energy -rays Solar neutrons PHEBUS/GRANAT observations Deduced solar neutron production time profile (i.e. pion time profile) NM CLIMAX observations of solar neutrons and prediction for a time extended neutron production Spectral evolution of high-energy -rays
Background subtracted count spectra From PHEBUS/GRANAT Full line: one of the best fits with electron and pion contributions Dotted line: electron contribution -ray lines Background subtracted count spectrum From 300 keV to 100 MeV Full line: one of the best fits with one electron bremsstrahlung component & pion contribution Dotted line: electron component Electron bremsstrahlung component: Ae= 1 10 5 = 2 Eroll= 40 MeV Proton component: =2 Ntot= 8 1031 Emax= 750 MeV Vilmer et al, 2003
Proton spectra and numbers from pion decay radiation and -ray line radiation and neutron observations? • Do we have a single energetic ion population from a few MeV/nuc to a few GeV/nuc
Ion spectrum with =2 from a few Mev to Emax : no compatibility • Ion spectrum with =3 from a few Mev to Emax : only with Emax = 750 MeV BUT GeV neutron production!! • Ion spectrum with =4 from a few Mev to Emax : OK if Emax > 2 GeV for spectra 1 to 3 BUT not enough pion production for spectrum 4!! • No single shape of energetic ions from MeV to GeV • Evidence of spectral breaks? Other forms of accelerated energetic spectra? • Also found for other events (e.g. Kocharov) • (see some of the simulations of particle acceleration by Dauphin et al)
X/ -ray spectrum Thermal components T= 2 10 7 K T= 4 10 7 K Electron bremsstrahlung Ultrarelativistic Electron Bremsstrahlung -ray lines (ions > 3 MeV/nuc) Phebus/Granat observations Pion decay radiation (ions > 100 MeV/nuc) sometimes with neutrons RHESSI Energy range
Bremsstrahlung and Synchrotron Emitting Electrons (I) • Simple relationship between the spectral indexes of cm-mm and HXR/GR producing electrons • Spectral index from X-ray obs Thick target production from electrons • Electron flux: F(E,t) x from X-ray obs • Simple relationship between electron flux in the X-ray source and instantaneous number of electrons in the gyrosynchrotron emitting source (r) F(E,t) ~ N(E,t)/T(E) with T(E) escape time r ~ x = + 1 • Gyrosynchrotron Note also: obs ~ L2 B Higher frequencies from higher energy electrons
Bremsstrahlung and Synchrotron Emitting Electrons (II) • Mm-wave emission (86 GHz) produced by high energy electrons (1 MeV) with a flatter spectrum than 100 keV X-ray spectrum (e.g. Kundu et al, 1994, White, 1999) • Early in the flare: production of relativistic electrons on short time scales • 2 components of electron populations or result of acceleration process?
Electron-Dominated Events • First observed with SMM (Rieger et al, 1993) • Short duration (s to 10 s) high energy (> 10 MeV) bremsstrahlung emission • No detectable GRL flux • Photon spectrum > 1 MeV (X-1.5—2.0) • For 2 PHEBUS events • if Wi>1MeV/nuc We>20 keV • No detectable GRL above continuum • Weak GRL flares? Vilmer et al (1999) BATSE PHEBUS
Bremsstrahlung and Synchrotron Emitting Electrons (III): Electron « broken » energy spectra • Many evidence from HXR/GR observations that hardening of electron spectra above a few hundred keV (i.e. electron dominated disk event but also GRL events) • Evolution of the break energy in the course of the event • Relation between mm/cm emitting electrons and electrons above Eb PHEBUS& Bern Trottet et al (1998)
Trottet, Vilmer et al. 1998 Bern and PHEBUS/GRANAT observations
Trottet, Vilmer et al. 1998 • = radio spectral index • Peak c - from HXR/GR = 4.1 for E<Eb = 1.5 for E>Eb • observed • = 1.5 Peak d - from HXR/GR = 2.7 for E<Eb = 1.2 for E>Eb • observed = 1.3
Bremsstrahlung and Synchrotron Emitting Electrons (IV): Production of submm emissions by ultrarelativistic electrons? First detection at 212 GHz Now also at 405 GHZ (Kaufman et al, 2002,2004) Gyrosynchrotron emission From power law energy distribution with = 2.7 Corresponding to a mid size electron-dominated event above > 100 kev (no observations) From Trottet, Raulin, Kaufman et al, 2002
Bremsstrahlung and Synchrotron Emitting Electrons (V): Production of submm emissions by ultrarelativistic electrons? II Rise? spectre III Radio emitting electron spectra harder than the X-ray observed one Consistent with = 2.3 in II and = 3.5 in III and B=500G But electrons of energies around 10 MeV needed Breaks? (from Lüthi et al, 2004) To be further investigated with flares also observed above a few MeV
3 November 2003 event <α> = -1.2 (centimétrique) δ = -2.7 (électrons) From Dauphin et al, 2005 =1.22-0.9 (Dulk et March, 1982) Analyse spectrale X/centimétrique 09:49:10-09:50:00 09:58:10-09:58:40 09:57:40-09:58:00 09:58:40-09:59:50 09:57:00-09:57:30 <α>2eme phase= -1.2
Hypothèse: électrons rayonnent dans les X en cible épaisse (Brown, 1971) + propagation libre entre sources X et centimétrique: γ=δ+1(photons)= -1.7 Analyse spectrale de RHESSI Indice spectral des photons = -1.6 Rear detectors (2 and 7 excluded) no pulse pile up correction Binning code 12 1 keV 3 to 60 keV 2 keV to 120 keV 5 keV to 250 keV 10 keV to 2250 keV 50 keV 2250 keV to 7200 keV 200 keV 7.2 MeV to 17 MeV + special binning around 511 keV and 2.2 MeV line 2003/11/03 09:58:49.999 2003/11/03 10:01:29.999 4.00969 3.26291 581.398 1.61146 1.4129 0 Flux total observé Flux du bruit de fond raie du bruit de fond Population d’électrons énergétique émettant le rayonnement X > 500 keV compatible avec le rayonnement centimétrique Fit reproduisant le mieux le flux total – le flux du bruit de fond -1.6
November 4, 2003 flare spectra SST OVSA Itapetinga A new component Starting from 200 GHz? In relationship with High frequency radiations Kaufmann et al, 2004)
Observations Of high energy radiation By SONG/CORONAS Myagkova et al, 2004
2003 October 28 Also for the 28 October flare See Trottet et al Koronas Trottet et al. 2005 in prep.