1 / 14

Natural Deduction for Predicate Logic

Natural Deduction for Predicate Logic. Bound Variable: A variable within the scope of a quantifier. (x) Px (  y ) (Zy · Uy) (z) (Mz  ~Nz) Free Variable: A variable not within the scope of a quantifier. Px Py · ~Qy ~Az  Bz. Universal Instantiation (UI)

Download Presentation

Natural Deduction for Predicate Logic

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Natural Deduction for Predicate Logic • Bound Variable: A variable within the scope of a quantifier. • (x) Px • (y) (Zy · Uy) • (z) (Mz  ~Nz) • Free Variable: A variable not within the scope of a quantifier. • Px • Py · ~Qy • ~Az  Bz

  2. Universal Instantiation (UI) • Used to remove a universal quantifier. • Consistently replace the bound variables with ANYfreevariable or ANY constant. • For example: • (x) Px • Px • (y) (~Cy  Sy) • ~Cz  Sz

  3. (z) (Dz  ~Tz) • Da  ~Ta • These uses of UI are invalid because of inconsistent replacements. • (x) (~Cx  Sx) • ~Cx  Sy • (z) (Dz  ~Tz) • Da  ~Tb

  4. Existential Generalization (EG) • Used to add an existential quantifier. • Consistently replace the constants or free variables with ANYboundvariable and add (x). • For example: • Pa • (x) Px • ~Cm  Sm • (y) (~Cy  Sy)

  5. Dx · ~Tx • (x) (Dx · ~Tx) • These uses of EG are invalid because of inconsistent replacements. • ~Ca  Sb • (x) (~Cx  Sy) • Dy  ~Tz • (x) (Dx  ~Tx)

  6. Universal Generalization (UG) • Used to add a universal quantifier. • Consistently replace the free variables with ANYboundvariable and add (x). • For example: • Px • (x) Px • ~Cy  Sy • (y) (~Cy  Sy) • Dx · ~Tx • (z) (Dz · ~Tz)

  7. One may not use UG on statements containing constants. (All of these uses of UG are invalid.) • La • (x) Lx • Gb v ~Hb • (y) (Gy v ~Hy) • ~Ne  Me • (z) (~Nz  Mz)

  8. These uses of UG are invalid because of inconsistent replacements. • ~Cx  Sy • (x) (~Cx  Sy) • Dy ~Tz • (x) (Dx  ~Tx)

  9. Existential Instantiation (EI) • Used to remove an existential quantifier. • Consistently replace the bound variables with ANY new constant, i.e. any constant that has not been previously used anywhere in the proof. • For example: 6.) Pa 7.) (x) Qx 8.) Qb 7 EI (valid) 8.) Qa 7 EI (invalid)

  10. 1.) Sm v ~Gm . . . / ~Tk · Wk 8.) (y) (Ny · ~My) 9.) Na · ~Ma 8 EI (valid) 9.) Nm · ~Mm8 EI (invalid) 9.) Nk · ~Mk8 EI (invalid)

  11. These uses of EI are invalid because of inconsistent replacements. • (x) (~Cx  Sy) • ~Ca  Sb • (x) (Dx  ~Tx) • Dn  ~Tm • When one must both EI and UI to the same constant in a proof, do the EI first.

  12. N. B.: The rules in Section 8.2 may NOT be used on parts of lines. • All of these moves are INVALID. • (x) Zx  (x) ~Qx • Zx  ~ Qx • (z) Lz v (z) Pz • Ln v Pn • Tm  (y) (~Sy  Qy) • Tm  (~Sy  Qy)

  13. N. B.: The rules from 7.1 and 7.2 may NOT be used on statements in which the WHOLE statement is quantified • These moves are INVALID. • (x) (Ax  Bx) (x) Ax (x) Bx • (x) (Cx v Dx) (x) ~Cx (x) Dx

  14. N. B.: The rules from 7.1 and 7.2 MAY be used on statements in which the parts, not the whole, are quantified. • These moves are VALID. • (x) Ax  (x) Bx (x) Ax (x) Bx • (x) Dx v (x) Cx ~(x) Dx (x) Cx

More Related