150 likes | 439 Views
Natural Deduction for Predicate Logic. Bound Variable: A variable within the scope of a quantifier. (x) Px ( y ) (Zy · Uy) (z) (Mz ~Nz) Free Variable: A variable not within the scope of a quantifier. Px Py · ~Qy ~Az Bz. Universal Instantiation (UI)
E N D
Natural Deduction for Predicate Logic • Bound Variable: A variable within the scope of a quantifier. • (x) Px • (y) (Zy · Uy) • (z) (Mz ~Nz) • Free Variable: A variable not within the scope of a quantifier. • Px • Py · ~Qy • ~Az Bz
Universal Instantiation (UI) • Used to remove a universal quantifier. • Consistently replace the bound variables with ANYfreevariable or ANY constant. • For example: • (x) Px • Px • (y) (~Cy Sy) • ~Cz Sz
(z) (Dz ~Tz) • Da ~Ta • These uses of UI are invalid because of inconsistent replacements. • (x) (~Cx Sx) • ~Cx Sy • (z) (Dz ~Tz) • Da ~Tb
Existential Generalization (EG) • Used to add an existential quantifier. • Consistently replace the constants or free variables with ANYboundvariable and add (x). • For example: • Pa • (x) Px • ~Cm Sm • (y) (~Cy Sy)
Dx · ~Tx • (x) (Dx · ~Tx) • These uses of EG are invalid because of inconsistent replacements. • ~Ca Sb • (x) (~Cx Sy) • Dy ~Tz • (x) (Dx ~Tx)
Universal Generalization (UG) • Used to add a universal quantifier. • Consistently replace the free variables with ANYboundvariable and add (x). • For example: • Px • (x) Px • ~Cy Sy • (y) (~Cy Sy) • Dx · ~Tx • (z) (Dz · ~Tz)
One may not use UG on statements containing constants. (All of these uses of UG are invalid.) • La • (x) Lx • Gb v ~Hb • (y) (Gy v ~Hy) • ~Ne Me • (z) (~Nz Mz)
These uses of UG are invalid because of inconsistent replacements. • ~Cx Sy • (x) (~Cx Sy) • Dy ~Tz • (x) (Dx ~Tx)
Existential Instantiation (EI) • Used to remove an existential quantifier. • Consistently replace the bound variables with ANY new constant, i.e. any constant that has not been previously used anywhere in the proof. • For example: 6.) Pa 7.) (x) Qx 8.) Qb 7 EI (valid) 8.) Qa 7 EI (invalid)
1.) Sm v ~Gm . . . / ~Tk · Wk 8.) (y) (Ny · ~My) 9.) Na · ~Ma 8 EI (valid) 9.) Nm · ~Mm8 EI (invalid) 9.) Nk · ~Mk8 EI (invalid)
These uses of EI are invalid because of inconsistent replacements. • (x) (~Cx Sy) • ~Ca Sb • (x) (Dx ~Tx) • Dn ~Tm • When one must both EI and UI to the same constant in a proof, do the EI first.
N. B.: The rules in Section 8.2 may NOT be used on parts of lines. • All of these moves are INVALID. • (x) Zx (x) ~Qx • Zx ~ Qx • (z) Lz v (z) Pz • Ln v Pn • Tm (y) (~Sy Qy) • Tm (~Sy Qy)
N. B.: The rules from 7.1 and 7.2 may NOT be used on statements in which the WHOLE statement is quantified • These moves are INVALID. • (x) (Ax Bx) (x) Ax (x) Bx • (x) (Cx v Dx) (x) ~Cx (x) Dx
N. B.: The rules from 7.1 and 7.2 MAY be used on statements in which the parts, not the whole, are quantified. • These moves are VALID. • (x) Ax (x) Bx (x) Ax (x) Bx • (x) Dx v (x) Cx ~(x) Dx (x) Cx