1 / 31

High energy neutrino astronomy: Challenges & Prospects

High energy neutrino astronomy: Challenges & Prospects. Eli Waxman Weizmann Institute, ISRAEL. High energy n ’ s: A new window. MeV n detectors: Solar & SN1987A n ’ s Stellar physics (Sun ’ s core, SNe core collapse) n physics >0.1 TeV n detectors:

heman
Download Presentation

High energy neutrino astronomy: Challenges & Prospects

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. High energy neutrino astronomy:Challenges & Prospects Eli Waxman Weizmann Institute, ISRAEL

  2. High energy n’s: A new window MeV n detectors: • Solar & SN1987A n’s • Stellar physics (Sun’s core, SNe core collapse) • n physics >0.1 TeV n detectors: • Extendn horizon to extra-Galactic scale MeV n detectors limited to local (Galactic) sources [10kt @ 1MeV1Gton @ TeV , sTeV/sMeV~106] • Study “Cosmic accelerators” [pg, pp  p’sn’s] • n physics

  3. HEN detector motivation:Cosmic accelerators log [dJ/dE] E-2.7 Galactic Protons E-3 Source: Supernovae(?) X-Galactic (?) Heavy Nuclei Source? Light Nuclei? Lighter Source? 1 1010 106 Cosmic-ray E [GeV] [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00]

  4. UHE, >1010GeV, CRs J(>1011GeV)~1 / 100 km2 year 2p sr Auger: 3000 km2 3,000 km2 Fluorescence detector Ground array

  5. Composition clues Auger 2009 HiRes 2005

  6. Flux & Spectrum • E2(dN/dE)=E2(dQ/dE) teff. (teff. : p + gCMB N +p) • Assume: p, dQ/dE~(1+z)mE-a cteff [Mpc] log(E2dQ/dE) [erg/Mpc2 yr] GZK (CMB) suppression • >1019.3eV: consistent with • protons, E2(dQ/dE) ~1043.7 erg/Mpc3 yr + GZK • E2(dQ/dE) ~Const.: Consistent with shock acceleration [Katz & Waxman 09] [Waxman 1995; Bahcall & Waxman 03] [Krimsky 77; Bednarz & Ostrowski 98; Keshet & Waxman 05 cf. Lemoine & Revenu 06]

  7. Anisotropy clues Biased (rsource~rgal for rgal>rgal ) CR intensity map (rsource~rgal) Galaxy density integrated to 75Mpc • Cross-correlation signal: Anisotropy @ 98% CL; Consistent with LSS • Correlation with AGN ? VCV catalogue: Anisotropy @ 99% CL  low-luminosity AGN? Simply trace LSS! (& VCV non-uniform, incomplete…) [Kashti & Waxman 08] [Waxman, Fisher & Piran 1997] [Auger collaboration 07]

  8. Composition-Anisotropy connection • Plausible assumptions: Acceleration of Z(>>1) to E ~ Acceleration of p to E/Z Jp(E/Z)>=JZ(E/Z) + Note: p(E/Z) propagation = Z(E) propagation  Anisotropy of Z at 1019.7eV implies Stronger aniso. signal (due to p) at (1019.7/Z) eV ! Not observed! [:Lemoine & Waxman 09]

  9. The 1020eV challenge v R B /G v G2 G2 2R l =R/G (dtRF=R/Gc) [Waxman 95, 04, Norman et al. 95]

  10. Suspects • - L>1012 (G2/b) Lsun: • * Extra-Galactic • * Non at d<dGZK  Transient • - E2(dQ/dE) ~1043.7 erg/Mpc3 yr • Gamma-ray Bursts (GRBs) • G~ 102.5, Lg~ 1019LSun L/G2 >1012 Lsun • (dn/dVdt)*E~10-9.5 /Mpc3 yr *1053.5erg • ~1044 erg/Mpc3 yr • Transient: DTg~10s << DTpg ~105 yr • Active Galactic Nuclei (AGN, Steady): • G~ 101 L>1014 LSun=few brightest • !! Non at d<dGZK  Invoke: • “Dark” (proton only) AGN • L~ 1014 LSun , Dt~1month flares from • stellar disruptions [Waxman 95, Vietri 95, Milgrom & Usov 95] [Waxman 95] [Blandford 76; Lovelace 76] [Boldt & Loewenstein 00] [Farrar & Gruzinov 08]

  11. Source physics challenges • GRB: 1020LSun, MBH~1Msun, M~1Msun/s, G~102.5 • AGN: 1014 LSun, MBH~109Msun, M~1Msun/yr, G~101 • MQ: 105 LSun, MBH~1Msun, M~10-8Msun/yr, G~100.5 Jet acceleration [Reviws: GRBs Kouveliotou 94; Piran 05 AGN Begelman, Blandford & Rees 84 MQ HE: Aharonian et al 2005; Khangulyan et al 2007] Energy extraction Particle acceleration Jet content (kinetic/Poynting) Radiation mechanisms

  12. Cosmic accelerators: clues & open Q’s • X-Galactic, (?)protons “Conventional” accelerators Ep2dN/dEp~ 0.6x1044 erg/Mpc3 yr • Open Q’s: Primaries Source identity Acceleration process Cosmic-accelerators physics (BH accretion jets, Baryonic/EM…)

  13. HE n Astronomy • p + g N +p p0 2g ; p+  e+ + ne + nm + nm  Identify UHECR sources Study BH accretion/acceleration physics • E2dn/dE=1044erg/Mpc3yr & tgp<1: • If X-G p’s:  Identify primaries, determine f(z) [Waxman & Bahcall 99; Bahcall & Waxman 01] [Berezinsky & Zatsepin 69]

  14. HE n experiments Optical Cerenkov - South Pole Amanda: 660 OM, 0.05 km3 IceCube: +660/yr OM (05/06…) 4800 OM=1 km3s - Mediterranean Antares: 10 lines (Nov 07), 750 OM 0.05 km3 Nestor: (?)  0.1 km3 km3Net: R&D  1 km3 • UHE: Radio Air shower • Aura, Ariana (in Ice) Auger (nt) • ANITA (Balloon) EUSO (?) • LOFAR

  15. Single flavor Multi flavor [Anchordoqui & Montaruli 09]

  16. Star bursts: A lower bound? • Star burst galaxies: - Star Formation Rate ~103Msun/yr >> 1 Msun/yr “normal” (MW) - Density ~103/cc >> 1/cc “normal” - B ~1 mG >> 1mG “normal” • Most stars formed in (z>1.5) star bursts • High density + B: CR e-’s lose all energy to synchrotron radiation CR p’s lose all energy to p production [Quataert et al. 06] [Loeb & Waxman 06]

  17. M82 M81 Mark Westmoquette (University College London), Jay Gallagher (University of Wisconsin-Madison), Linda Smith (University College London), WIYN//NSF, NASA/ESA Robert Gendler

  18. Starbursts Synchrotron radio Fn calibration p0gg, Fn ~Fg M82, NGC253: Hess, VERITAS 09 Fermi 09 dN/dE~1/Ep, p<~2.2 [Loeb & Waxman 06]

  19. GRB n’s • If: Baryonic jet • Background free: [Waxman & Bahcall 97, 99; Rachen & Meszaros 98; Alvarez-Muniz & F. Halzen 99; Guetta et al. 04; Hooper, Alvarez-Muniz, Halzen & E. Reuveni 04]

  20. The current limit [Achterberg et al. 08 (The IceCube collaboration)]

  21. n- physics & astro-physics [Waxman & Bahcall 97] • p decay  ne:nm:nt = 1:2:0 (Osc.) ne:nm:nt = 1:1:1 t appearance experiment • GRBs: n-g timing (10s over Hubble distance) LI to 1:1016; WEP to 1:106 • EM energy loss of m’s (and p’s) • ne:nm:nt = 1:1:1 (E>E0) 1:2:2 • GRBs: E0~1015eV • Combining E<E0, E>E0 flavor measurements may constrain CPV [SinQ13 Cosd] [Waxman & Bahcall 97; Amelino-Camelia,et al.98; Coleman &.Glashow 99; Jacob & Piran 07] [Rachen & Meszaros 98; Kashti & Waxman 05] [Blum, Nir & Waxman 05]

  22. Outlook • Particle+Astro-phys. Open Q’s - >1011GeV particles: primaries, f(z),origin & acceleration - Physics of relativistic sources (GRBs, AGN, MQ…) - <1011GeV particles: sources, acceleration, propagation (SNRs, starbursts, …) - nm ntt appearance gn Timing  LI to 1:1016; WEP to 1:106 Flavor ratios  CPV • New HE g, CR and n detectors >103 km2 hybrid >1019eV CR detectors ~1 km3 (=1Gton) 1-1000TeV n detectors >>1 km3[radio,…] >>1000TeV n detectors 10MeV—10GeV g-ray satellite (AGILE, GLAST) >0.1TeV (ground based) g-ray telescopes (Milagro, HESS, MAGIC, VERITAS) Point sources

  23. & IceCube AMANDA

  24. The Mediterranean effort • ANTARES (NESTOR, NEMO) KM3NeT

  25. Back up slides

  26. Electrons MeV g’s: tgg<1: e- (g) spectrum: e- (g)energy production Protons Acceleration/expansion: Synchrotron losses: Proton spectrum: p energy production: GRB proton/electron acceleration 52 Afterglow, RGRB~SFR [Waxman 95, 04]

  27. The GRB “GZK sphere” g p • LSS filaments: D~1Mpc, fV~0.1, n~10-6cm-3, T~0.1keV eB=(B2/8p)/nT~0.01 (B~0.01mG), lB~10kpc • Prediction: D lB [Waxman 95; Miralda-Escude & Waxman 96, Waxman 04]

  28. GRB Model Predictions [Miralda-Escude & Waxman 96]

  29. AGN n models?? BBR05

  30. >1019eV cosmic rays: Clue summary • Spectrum (+Xmax)  likely X-Galactic protons • Anisotropy + Spectrum  likely “Conventional” sources • L constraint  likely Transient sources • Ep2dN/dEp~ 0.7x1044 erg/Mpc3 yr • What next for Auger? Identify (narrow spectrum) point source(s)?

More Related