1 / 47

ACID-BASE BALANCE

ACID-BASE BALANCE. By: Husnil Kadri Biochemistry Departement Medical Faculty Of Andalas University Padang. Hendersen-Hasselbalch (1909). CARA TRADISIONAL :. HCO 3. HCO 3. [HCO 3 - ]. BASA. GINJAL. Normal. pH = 6.1 + log. Kompensasi. CO 2.  pCO 2. PARU. ASAM. CO 2.

hendrixe
Download Presentation

ACID-BASE BALANCE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ACID-BASE BALANCE By: HusnilKadri Biochemistry Departement Medical Faculty Of Andalas University Padang

  2. Hendersen-Hasselbalch(1909) CARA TRADISIONAL :

  3. HCO3 HCO3 [HCO3-] BASA GINJAL Normal pH = 6.1 + log Kompensasi CO2  pCO2 PARU ASAM CO2 Normal

  4. Carbonic acid/bicarbonate buffer system pKa = 6.1 • The pKa of carbonic acid is 6.1 • Carbonic acid is the major buffer in ECF • The pH of blood can be determined using the Henderson-Hasselbalch equation H2CO3 H+ + HCO3- ECF: Carbonic acid Bicarbonate ion

  5. Henderson-Hasselbalch equation • pH = pKa + log [HCO3-]/[H2CO3] • pH = pKa + log [HCO3-]/0.03 x PCO2 • 7.4 = 6.1 + log 20 / 1 • 7.4 = 6.1 + 1.3 • Plasma pH equals 7.4 when buffer ratio is 20/1 • The solubility constant of CO2 is 0.03

  6. GANGGUAN KESEIMBANGAN ASAM-BASA TRADISIONAL

  7. Normal Compensatory Response • Any primary disturbance in acid-base homeostasis invokes a normal compensatory response. • A primary metabolic disorder leads to respiratory compensation, and a primary respiratory disorder leads to an acute metabolic response due to the buffering capacity of body fluids. • A more chronic compensation (1-2 days) due to alterations in renal function.

  8. Mixed Acid - Base Disorder • Most acid-base disorders result from a single primary disturbance with the normal physiologic compensatory response and are called simple acid-base disorders. • In certain cases, however, particularly in seriously ill patients, two or more different primary disorders may occur simultaneously, resulting in a mixed acid-base disorder. • The net effect of mixed disorders may be additive (eg, metabolic acidosis and respiratory acidosis) and result in extreme alteration of pH; • or they may be opposite (eg, metabolic acidosis and respiratory alkalosis) and nullify each other’s effects on the pH.

  9. Cara Stewart ; DUA VARIABEL pH atau [H+] DALAM PLASMA DITENTUKAN OLEH VARIABEL INDEPENDEN VARIABEL DEPENDEN • Stewart PA. Can J Physiol Pharmacol 61:1444-1461, 1983.

  10. INDEPENDENT VARIABLES DEPENDENT VARIABLES Strong Ions Difference pH pCO2 Protein Concentration

  11. VARIABEL INDEPENDEN CO2 STRONG ION DIFFERENCE WEAK ACID pCO2 SID Atot

  12. DEPENDENT VARIABLES H+ HCO3- OH- AH CO3- A-

  13. CO2 • Rx dominandari CO2adalahrxabsorpsi OH-hasildisosiasi air denganmelepas H+. • Semakintinggi pCO2semakinbanyak H+ yang terbentuk. • Iniygmenjadidasardariterminologi “respiratory acidosis,” yaitupelepasan ion hidrogenakibat pCO2 CO2Didalam plasma beradadalam 4 bentuk • sCO2 (terlarut) • H2CO3asamkarbonat • HCO3- ion bikarbonat • CO32- ion karbonat

  14. STRONG ION DIFFERENCE Definisi: Strong ion difference adalah ketidakseimbangan muatan dari ion-ion kuat. Lebih rinci lagi, SID adalah jumlah konsentrasi basa kation kuat dikurangi jumlah dari konsentrasi asam anion kuat. Untuk definisi ini semua konsentrasi ion-ion diekspresikan dalam ekuivalensi (mEq/L). Semua ion kuat akan terdisosiasi sempurna jika berada didalam larutan, misalnya ion natrium (Na+), atau klorida (Cl-). Karena selalu berdisosiasi ini maka ion-ion kuat tersebut tidak berpartisipasi dalam reaksi-reaksi kimia. Perannya dalam kimia asam basa hanya pada hubungan elektronetraliti.

  15. STRONG ION DIFFERENCE Gamblegram Mg++ Ca++ K+ 4 SID Na+ 140 Cl- 102 [Na+] + [K+] + [kation divalen] - [Cl-] - [asam organik kuat-] [Na+] + [K+] - [Cl-] = [SID] 140 mEq/L + 4 mEq/L - 102 mEq/L = 34 mEq/L KATION ANION

  16. SKETSA HUBUNGAN ANTARA SID,H+ DAN OH- [H+] [OH-] Konsentrasi [H+] Asidosis Alkalosis SID (–) (+) Dalam cairan biologis (plasma) dgn suhu 370C, SID hampir selalu positif, biasanya berkisar 30-40 mEq/Liter

  17. WEAK ACID [Protein-] + [H+] [Protein H] Kombinasi protein dan posfat disebut asam lemah total (total weak acid)  [Atot]. Reaksi disosiasinya adalah: disosiasi [Atot] (KA) = [A-].[H+]

  18. Gamblegram Mg++ HCO3- 24 Ca++ K+ 4 SID Na+ 140 Weak acid (Alb-,P-) Cl- 102 KATION ANION

  19. APLIKASI H3O+ = H+ = 40 mEq/L HCO3-  HCO3- HCO3- HCO3 = 24 Na 140 K SID Mg SID n Ca SID  Alb P Alb Cl 115 Laktat/keto=UA P Alb Cl 102 Cl 102 P CL 95 Asidosis hiperkloremi Keto/laktat asidosis Alkalosis hipokloremi KATION ANION

  20. KLASIFIKASI GANGGUAN KESEIMBANGAN ASAM BASA BERDASARKAN PRINSIP STEWART Fencl V, Jabor A, Kazda A, Figge J. Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Respir Crit Care Med 2000 Dec;162(6):2246-51

  21. ASIDOSIS ALKALOSIS I. Respiratori  PCO2  PCO2 II. Nonrespiratori (metabolik) 1. Gangguan pd SID a. Kelebihan / kekurangan air  [Na+],  SID  [Na+],  SID b. Ketidakseimbangan anion kuat:  [Cl-],  SID  [Cl-],  SID i. Kelebihan / kekurangan Cl- ii. Ada anion tak terukur  [UA-],  SID 2. Gangguan pd asam lemah i. Kadar albumin  [Alb]  [Alb] ii. Kadar posphate  [Pi]  [Pi] KLASIFIKASI Fencl V, Jabor A, Kazda A, Figge J. Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Respir Crit Care Med 2000 Dec;162(6):2246-51

  22. RESPIRASI M E T A B O L I K Abnormal pCO2 Abnormal SID Abnormal Weak acid Alb PO4-  Anion kuat AIR Cl- UA- Turun Alkalosis Turun kekurangan Hipo Asidosis Meningkat kelebihan Hiper Positif meningkat Fencl V, Am J Respir Crit Care Med 2000 Dec;162(6):2246-51

  23. KEKURANGAN AIR - WATER DEFICIT Diuretic Diabetes Insipidus Evaporasi Plasma Plasma Na+ = 140 mEq/L Cl- = 102 mEq/L SID = 38 mEq/L 140/1/2 = 280 mEq/L 102/1/2= 204 mEq/L SID = 76 mEq/L 1 liter ½ liter SID : 38  76= alkalosis ALKALOSIS KONTRAKSI

  24. KELEBIHAN AIR - WATER EXCESS Plasma 140/2 = 70 mEq/L 102/2 = 51 mEq/L SID = 19 mEq/L Na+ = 140 mEq/L Cl- = 102 mEq/L SID = 38 mEq/L 1 Liter H2O 1 liter 2 liter SID : 38  19= Acidosis ASIDOSIS DILUSI

  25. GANGGUAN PD SID:Pengurangan Cl- Plasma Na+ = 140 mEq/L Cl- = 95 mEq/L SID = 45 mEq/L 2 liter SID  ALKALOSIS ALKALOSIS HIPOKLOREMIK

  26. GANGGUAN PD SID:Penambahan/akumulasi Cl- Plasma Na+ = 140 mEq/L Cl- = 120 mEq/L SID = 20 mEq/L 2 liter SID  ASIDOSIS ASIDOSIS HIPERKLOREMIK

  27. PLASMA + NaCl 0.9% Plasma NaCl 0.9% Na+ = 140 mEq/L Cl- = 102 mEq/L SID = 38 mEq/L Na+ = 154 mEq/L Cl- = 154 mEq/L SID = 0 mEq/L 1 liter 1 liter SID : 38 

  28. ASIDOSIS HIPERKLOREMIK AKIBAT PEMBERIAN LARUTAN Na Cl 0.9% Plasma = Na+ = (140+154)/2 mEq/L= 147 mEq/L Cl- = (102+ 154)/2 mEq/L= 128 mEq/L 2 liter SID = 19 mEq/L SID : 19  Asidosis

  29. PLASMA + Larutan RINGER LACTATE Plasma Ringer laktat Laktat cepat dimetabolisme Na+ = 140 mEq/L Cl- = 102 mEq/L SID= 38 mEq/L Cation+ = 137 mEq/L Cl- = 109 mEq/L Laktat- = 28 mEq/L SID = 0 mEq/L 1 liter 1 liter SID : 38

  30. Normal pH setelah pemberian RINGER LACTATE Plasma = Na+ = (140+137)/2 mEq/L= 139 mEq/L Cl- = (102+ 109)/2 mEq/L = 105 mEq/L Laktat- (termetabolisme) = 0 mEq/L 2 liter SID = 34 mEq/L SID : 34  lebih alkalosis dibanding jika diberikan NaCl 0.9%

  31. MEKANISME PEMBERIAN NA-BIKARBONAT PADA ASIDOSIS Plasma; asidosis hiperkloremik Plasma + NaHCO3 Na+ = 140 mEq/L Cl- = 130 mEq/L SID =10 mEq/L Na+ = 165 mEq/L Cl- = 130 mEq/L SID = 35 mEq/L 25 mEq NaHCO3 HCO3 cepat dimetabolisme 1 liter 1.025 liter SID  : 10  35 :  Alkalosis, pH kembali normal  namun mekanismenya bukan karena pemberian HCO3- melainkan karena pemberian Na+ tanpa anion kuat yg tidak dimetabolisme seperti Cl- sehingga SID   alkalosis

  32. UA = Unmeasured Anion: Laktat, acetoacetate, salisilat, metanol dll. Na+ HCO3- HCO3- SID  Na+ K K SID Keto- A- A- Cl- Cl- Lactic/Keto asidosis Normal Ketosis

  33. GANGGUAN PD ASAM LEMAH: Hipo/Hiperalbumin- atau P- Na HCO3 Na HCO3 HCO3 Na K K K SID SID SID Alb-/P-  Alb-/P- Alb/P  Cl Cl Cl Asidosis hiperprotein/ hiperposfatemi Alkalosis hipoalbumin/hipoposfatemi Normal Acidosis Alkalosis

  34. Anion Gap • Described by Gamble in 1939 • Electroneutrality • Na+, Cl-, and HCO3 are measured ions Na + UC = Cl + HCO3 + UA UC= Sum of unmeasured cations UA = Sum of unmeasured anions

  35. Unmeasured Cations: total 11 mEq/L Potassium 4 Calcium 5 Magnesium 2 Unmeasured Anions: total 23 mEq/L Sulfates 1 Phosphates 2 Albumin 16 Lactic acid 1 Org. acids 3 Anion Gap

  36. Anion Gap Na + UC = Cl + HCO3 + UA 140 + 11 = 104 + 24 + 23 151 = 151 UA – UC = Na - (Cl + HCO3); Anion Gap = Na - (Cl + HCO3)

  37. If the anion gap is elevated • Then compare the changes from normal between the anion gap and [HCO3 -]. • If the change in the anion gap is greater than the change in the [HCO3 -] from normal, then a metabolic alkalosis is present in addition to a gap metabolic acidosis. • If the change in the anion gap is less than the change in the [HCO3 -] from normal, then a non gap metabolic acidosis is present in addition to a gap metabolic acidosis.

  38. Anion Gap Acidosis: • Anion gap >12 mEq/L; caused by a decrease in [HCO3 -] • balanced by an increase in an unmeasured acid ion from either endogenous production or exogenous ingestion (normochloremic acidosis).

  39. Non anion Gap Acidosis: • Anion gap = 8-12 mmol/L; caused by a decrease in [HCO3 -] balanced by an increase in chloride (hyperchloremic acidosis). Renal tubular acidosis is a type of non gap acidosis

  40. Increased Anion GapNormal = 8-15May differ institutionally • Accumulation of organic acids (ketones, lactate) • Toxic Ingestions • methanol, ethylene glycol, salicylates • Reduced inorganic acid excretion • phosphates, sulfates • Decrease in unmeasured cations (unusual)

  41. Methanol Uremia/Renal Failure INH, Iron--lactate Paraldehyde Lactic Acidosis Has many etiologies Cyanide, CO, Toluene, HS Poor perfusion Ethylene glycol Salicylates Methyl salicylate (Oil of wintergreen) Mg salicylate Increased AG Metabolic Acidosis: Levraut J et al. Int Care Med 23:417, 1997

  42. Increased Anion GapNormal = 8-15May differ institutionally“ion specific electrodes” • Accumulation of organic acids (ketones, lactate) • Toxic Ingestions • methanol, ethylene glycol, salicylates • Reduced inorganic acid excretion • phosphates, sulfates • Decrease in unmeasured cations (unusual)

  43. Decreased or Negative Anion GapClin J Am Soc Nephrol 2: 162-174, 2007 • Low protein most important • Albumin has many unmeasured negative charges • “Normal” anion gap (12) in cachectic person • Indicates anion gap metabolic acidosis • Other etiologies of low AG: • Low K, Mg, Ca, increased globulins (Mult. Myeloma), I intoxication • Negative AG • more unmeasured cations than unmeasured anions • Bromide, Iodide, Multiple Myeloma

  44. Change in Anion Gap vs HCO3 • In simple AG Metabolic Acidosis • decrease in plasma bicarbonate = increase in AG Anion Gap = 1 HCO3 • Helpful in identifying mixed disorders

  45. Metabolic Acidosis: Occurs rapidly Hyperventilation “Kussmaul Respirations” Deep > rapid (high tidal volume) Is not Respiratory Alkalosis Metabolic Alkalosis: Calculation not as accurate Hypoventilation Not Respiratory Acidosis Restricted by hypoxemia PCO2 seldom > 50-55 Respiratory Compensationfor

  46. Reference • Achmadi, A., George, YWH., Mustafa, I. Pendekatan “Stewart” DalamFisiologiKeseimbanganAsamBasa. 2007 • Beaudoin, D. Electrolytes and ion sensitive electrodes. PPT. 2003. • Ivkovic, A ., Dave, R. Renal review. PPT • Kersten. Fluid and electrolytes. PPT. • Marieb, EN. Fluid, electrolyte, and acid-base balance. PPT. Pearson Education, Inc. 2004 • Rashid, FA. Respiratory mechanism in acid-base homeostasis. PPT. 2005. • Silverthorn, DU. Integrative Physiology II: Fluid and Electrolyte Balance. Chapter 20, part B. Pearson Education, Inc. 2004 • Smith, SW. Acid-Base Disorders. www.acid-base.com

More Related