220 likes | 331 Views
Contraction kernels and Combinatorial maps . Luc Brun L.E.R.I. University of Reims -France luc.brun@univ-reims.fr and Walter Kropatsch P.R.I.P Vienna Univ. of Technology-Austria krw@prip.tuwien.ac.at. Content of the talk. Combinatorial maps Expected Advantages Irregular Pyramids
E N D
Contraction kernels and Combinatorial maps Luc Brun L.E.R.I. University of Reims -France luc.brun@univ-reims.fr and Walter Kropatsch P.R.I.P Vienna Univ. of Technology-Austria krw@prip.tuwien.ac.at
Content of the talk • Combinatorial maps • Expected Advantages • Irregular Pyramids • Contraction Kernels • Conclusion
-1 -2 -6 6 -5 -4 5 -3 4 1 3 2 Combinatorial Maps Definition • G=(V,E) G=(D,,) • decompose each edge into two half-edges(darts): D ={-6,…,-1,1,…,6} - : edge encoding
Combinatorial Maps Definition • G=(D,,) • : vertex encoding -2 -1 -6 6 -5 -4 *(1)=(1, *(1)=(1,3 *(1)=(1,3,2) 5 4 -3 3 2 1
Combinatorial MapsProperties • Computation of the dual graph : -2 -1 1 -6 -2 6 -5 -4 3 -1 -3 2 4 5 4 -3 5 -5 -4 3 6 -6 2 1 *(-1)=(-1,3,4,6) *(-1)=(-1,3,4 *(-1)=(-1,3 *(-1)=(-1 G=(D,,) G=(D, = , )
Reduction operations • Removal operation: not allowed for bridges • Contraction operation: not defined for self-loops -2 -1 -2 -1 -6 -6 6 -5 -4 6 -5 -4 d = *(3) 5 4 -3 5 4 3 2 1 2 1 -2 1 -2 1 3 2 -1 -3 d = *(3) -1 2 4 -5 -5 5 -4 -6 -4 6 4 5 6 -6
Reduction operation Property • Removal and Contraction preserve the orientation d d 1 1 c c 2 2 b 3 3 b 4 4 a a
Expected Advantages • May encode many topological features (multiple boundaries, surrounding relationships...) • Encode explicitely the orientation of edges around each vertex • Efficient encoding of the dual (may be implicitely encoded) • May be extended to higher dimensions
Irregular Pyramids • Definition: Stack of successively reduced graphs • Advantages • Efficient computation of global features through local computations • Describe several level of details of a same image • Construction scheme • Contraction parameter: Defines which edges must be contracted • Contraction operations
Contraction Kernel • G=(D,,), K D • K is a contraction Kernel iff • K defines a forest of G, • K preserves the image boundary • SD=D-K is called the set of surviving darts.
Example of Contraction : K Contraction of K1 Selection of K2 Selection of K1 Removal of redundant double edges Selection of redundant double edges Contraction of K2
Equivalent Contraction kernels K1 K2 K3
Reduction operation • Example K= 1 2 3 13 14 15 16 4 5 6 17 18 19 20 7 8 9 21 22 23 24 10 11 12
Reduction operation • Example K= 1 2 3 16 13 14 15 4 5 6 20 17 18 19 G=(D,,) G’=(D-K,’,) ? 7 8 9 24 21 22 23 10 11 12
2 -2 13 15 14 4 Reduction operation • How to compute the contracted combinatorial map ? • What is the value of ’(-2) ? 1 -1 2 -2 13 13 14 15 4
17 2 -2 15 4 14 7 Reduction operation • How to compute the contracted combinatorial map ? • What is the value of ’(-2) ? 1 -1 2 -2 13 14 15 -13 4 17 7
Connecting Walk For each d SD 1 -1 2 -2 3 13 14 15 16 4 5 6 17 18 19 20 7 8 9 CW(-2)=-2. -1. 13. 17. 21. 10 21 22 23 24 10 11 12
Construction of the contracted map • Sequential Algorithm For each d in SD=D-K d’=(d) 1 -1 2 -2 3 While( d’ K) d’=(d) 13 14 15 16 4 5 6 ’(d)=d’ 17 18 19 20 7 8 9 21 22 23 24 11 10 12
Construction of the contracted map 2 -2 1 3 -1 2 -2 3 14 15 16 13 14 15 16 4 4 5 6 5 6 7 11 19 20 18 17 18 19 20 7 8 9 8 9 23 24 21 22 23 24 22 10 12 11 -11 12 -11
-1 13 17 21 10 11 -1 13 17 21 10 11 13 17 21 10 11 11 17 21 10 11 11 11 21 10 11 11 11 11 10 11 11 11 11 11 11 11 11 11 11 11 Parallel computation of the contracted map • Each dart traverses in parallel its connecting walk Survive[d]=d While(Survive[d] K) Survive[d]=Survive[ (d)] 1 2 -2 -1 13 17 21 10 11
Conclusion • Construction of the pyramid by contraction of Combinatorial maps. • Sequential/Parallel algorithms based on Contraction Kernels • Equivalent Contraction Kernels • increase/decrease the decimation ratio
Perspectives • Explicit / Implicit encoding • General/optimised contraction kernel