130 likes | 256 Views
Section ARE213 Entropy Econometrics Estimation Procedure by Golan, Judge and Miller, 1996 May 2006 Hendrik Wolff. Short Review on MaxEntropy. 1948 Claude Shannon: Information Entropy: H( p ) = - j=1 p j ln p j Example of Dice: 6 Support Points z j : z 1 , z 2 ,..., z 6
E N D
Section ARE213Entropy Econometrics Estimation Procedure by Golan, Judge and Miller, 1996May 2006 Hendrik Wolff
Short Review on MaxEntropy • 1948 Claude Shannon: Information Entropy: • H(p) = - j=1 pj ln pj • Example of Dice: • 6 Support Points zj: z1, z2,..., z6 • Maxp H(p) • s.t. 3.5 = j=1...6 pjzj • 1.0 = j=1 pj • Solution: pj=1/6: • I.e. Uniform distribution of the discrete PDF f(z) • How does f(z) look like, if we don‘t observe the theoretical mean of 3.5? EXCEL
Solution to the ME-Problem Maxp H(p) = Maxp [- j=1 pj ln pj | y = j=1...6 pjzj , 1.0 = j=1 pj] Lagrange: L = - j=1 pj ln pj +λ (y - Zp) + θ(1.0 - p´1) δL/δp = - lnp - 1- Z´ λ - θ = 0 δL/δ λ = y- Zp = 0 δL/δ θ = 1-p´1 = 0 --> pk = exp(-Zk´λ) / Ωk(λ) with Ω(λ) = Σi=1...6 exp(-Zk´λ) No analytical solution (parallels Logit) Newton worsk since H is globally concave
Normalized Entropy Measuring the Information Content: „Importance of the contribution of each piece of data in reducing uncertainty“ S(p) = (- m pm ln pm) / ln(M) S(p) = 0 : no Uncertainty in the System: pi=1, pj=0 S(p) = 1 : Perfect Uncertainty
p: Posterior Probability q: Reference Probability Short Review on Cross-Entropy... 1951 Kullback & Leibler: CE(p,q) = j=1pj ln(pj /qj) Example: Unfair Dice EXCEL Normalized CE S(p) = ( - m pm ln pm ) / ( m-qm ln(qm))
1996: Golan, Judge & Miller Solution to ill-posed Problems via „Generalized ME“ Max H(p,w) = - m pm ln pm Max H(p,w) = - mkpmkln pmk Max H(p,w) = - mk pmk ln pmk - jnwjn ln wjn Max H(p,w) = - mk pmk ln pmk - jtwjt ln wjt • s.t. y=Xβ+e • with β=Zp, i.e.βk = m pmkZmk • e=Vw β is reparameterized into Analogue Separation of e into IK= (IK IM´)p IT= (IT IJ´)w
y z2 z1 x 1996: Golan, Judge & Miller Solution to ill-posed Problems via „Generalized ME“ Max H(p,w) = - m pm ln pm Max H(p,w) = - mkpmkln pmk Max H(p,w) = - mk pmk ln pmk - jnwjn ln wjn Max H(p,w) = - mk pmk ln pmk - jtwjt ln wjt s.t. y=Xβ+e β=Zp, e=Vw et[-2,2] Example: y = β1 + β2x , Prior info: βk[0,1] ,
y z2 z1 x From GME to GCE... Max H(p,w) = - m pm ln pm Max H(p,w) = - mkpmkln pmk Max H(p,w) = - mk pmk ln pmk - jnwjn ln wjn Min GCE(p,w|q,u) = + mk pmk ln pmk/qmk + jtwjt ln wjt/u jt s.t. y=Xβ+e with β=Zp, e=Vw
Min GCE(p,w|q,u) = γp´ln(p/q) +(1-γ)w´ln(w/u) s.t. α=ΓZp+Vw IK= (IK IM´)p IT= (IT IJ´)w Generalized Cross Entropy Input information---> Model ---> Outpu tinformationen , Z, q Y, X , V, u The Objective is to combine Data information and prior information in an efficient way to solve ill-posed problems.
Solution of the GCE-Approach Lagrange: L (p,q,λ,θ,τ) = p´ln(p/q) + w´ln(w/u) + λ´[α - ΓZp + Vw] + θ´[IK - (IK IM´)p] + τ´[IT - (IT IJ´)w] p = q exp(Z´Γ´λ) {(IK IM IM ´) [q exp(Z´Γ´λ) }-1 w = u exp(V´λ) {(IT IJ IJ ´) [u exp(V´λ) }-1 ---> pkm=qkm exp(zkmΓ´λ) / Ωk(λ) , with Ωk(λ) = Σmqkm exp(zkmΓ´λ) No closed form solution, but problem globally convex !
Solution GCE: Globally Convex Positive definite diagonal matrix P : Dimension (KMKM) W: Dimension (TJTJ)
Examples Heteroskedastizity: Time Series: Autocorrelation, ARCH etc. Cross-Section & Time Series (Panel): Statistical Model Selection: SUR: Simultaneous Systems: Dynamische Systems: LDV (Multinomiale, Censored Regression, Tobit Models):