1 / 15

Clusterpoint

Clusterpoint. Margarita Sudņika ms11077. RDBMS & NoSQL. Databases & tables → Document stores Columns, rows → Schemaless documents Scales UP → Scales UP & OUT Replications → Sharding & Replications For table like data → Unstructured data Legacy & mature → New. Clusterpoint.

hien
Download Presentation

Clusterpoint

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Clusterpoint Margarita Sudņika ms11077

  2. RDBMS & NoSQL Databases & tables → Document stores Columns, rows → Schemaless documents Scales UP → Scales UP & OUT Replications → Sharding & Replications For table like data → Unstructured data Legacy & mature → New

  3. Clusterpoint A scalable high-speed NoSQL database technology with Google-like search Manually ranking (svara piešķiršana) Solves 2 bigdataaccessproblems: • Long time waiting for query execution • Querry execution 0,005-0,5 seconds • Loadsofinformation

  4. Application Arhitecture HTTP Clusterpoint server software STAND-ALONE SERVER CLUSTER NODES (multi-server hardware) DOCUMENTS CUSTOMERS CONTACTS PROJECTS MAILS EMPLOYEES

  5. Clusterpoint Data storage model • xml Supported formats • Json • Xml • HTML • Text

  6. Features Full context search Unlimted database size Guaranteed querry size <0,5 s Clustering as default feature Scallable database mirroring Snippets with search hits Web friendly api Flexible data relevancy rules

  7. Access

  8. Search Free text Phrase Wildcards Patterns matches by lookup • John Smith In XML database structure Did you mean “...?” feature Faceted search and navigation Full data index for xml data

  9. API Simple, robust XML messagingXML request/response similar to SOAP Transport • http, https (post, get) • tcp • unix domain socket > 20 API commands Libraries: PHP, .NET (web service)

  10. API message <?xml version=”1.0” encoding=”REQUEST-ENCODING”?> <cpse:request xmlns:cpse=”www.clusterpoint.com”> <cpse:storage>storage name</cpse:storage> <cpse:command>command name</cpse:command> <cpse:timestamp>message date and time</cpse:timestamp> <cpse:requestid>message number</cpse:requestid> <cpse:application>creator of message</cpse:application> <cpse:user>user name</cpse:user> <cpse:password>user password</cpse:password> <cpse:reply_charset>reply encoding</cpse:reply_charset> <cpse:content> </cpse:content> </cpse:request> Lookup <document> <id>document id</id> </document> Insert <document> <id>document id</id> <title>document title</title> <rate>document rate</rate> <info>meta data</info> <site>document id</site> <text>textual information</text> <hidden>information that is not shown</hidden> </document> Search <query> search query </query> <docs> number of documents </docs> <offset> intend from the beginning </offset> <case_sensitive> boolean type parameter</case_sensitive> <relevance> boolean type parameter</relevance> <group_size> maximum from one group</group_size> <rate_from> FROM value </rate_from> <rete_to> TO value </rate_to>

  11. Platform Runs on *nix (tested on Linux and FreeBSD) Written in C/C++ Optimized for multi-core processors Source code is IP of Clusterpointwritten from the scratch PORTS Data tcp: 5550, 80 Unix domains sockets Cluster discovery UDP: 234.25.25.25:5550

  12. Parameters Disk space • 1.,5-2 times more than disk space • Data of 100 GB = 150-200 GB • The amount doesn’t include space for log files, as its possible rotate and backup files, • While file load and indexing size can increase 3-4 times, then return to normal size RAM • more RAM - more cached data –better performance • usually recomended >4 GB

  13. Use ComplementarySolving performance issues and bottlenecks of existing database systems StandaloneApplication is implemented using Clusterpoint DBMS USERS APP server Clusterpoint XML DBMS SQL XML USERS APP server

  14. Thank you

More Related