1 / 17

DREAM Collaboration : Recent Results on Dual Readout Calorimetry . F.Lacava

DREAM Collaboration : Recent Results on Dual Readout Calorimetry . F.Lacava for the DREAM Collaboration Cagliari – Cosenza – Iowa State – Pavia – Pisa – Roma I – Texas Tech . EPS Conference 2011. The Dual Readout Method The DREAM calorimeter.

hiero
Download Presentation

DREAM Collaboration : Recent Results on Dual Readout Calorimetry . F.Lacava

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DREAM Collaboration: RecentResults on DualReadoutCalorimetry . F.Lacava for the DREAM Collaboration Cagliari – Cosenza – Iowa State – Pavia – Pisa – Roma I – Texas Tech. EPS Conference 2011

  2. The DualReadoutMethod The DREAM calorimeter • In hadroniccalorimeters the fluctuationsof the e.m.showerfraction (fem) dominate • the energyresolutionforhadrons and jets. • In non compensatingcalorimeters (i.e. where e/h ≠ 1) itispossibleto eliminate this • effectbymeasuringfemeventbyevent. • Thiswasachieved in 2003 in the DREAM Calorimeterwithtwoactive media: • - the signalSfromScintillatingfiberstomeasuredE/dxfromallchargedparticles, • - the signalQ fromclearfibers (quartz or plastic) forCherenkov light mostlyfrom • the e.m.componentof the showers. • Copper – Scintillating and Quartz (clear) fibers • 19 hexagonaltowers, • eachtower: 270 hollowcopperrods, • 2 m (10 λInt) in depth , radius ≈ 16 cm ( < 1 λInt).

  3. If R = 1 fore.m.shower , the responseof the active media foranhadronicshoweris: • where e/h is 1.3 forScintill. and 4.7 forclearfibers • From the ratioof the signals in the quartz (clear) fibers Q and in scintillatingfibers S : • femismeasured and the energyiscorrected. • Resolutionislimitedby the smallCherenkovphotonyield (9-18 per depositedGeV ). “Jets” 200 GeV (pions interacting in a target)

  4. DualReadout in crystals • In last yearsextensivestudieswereperformedtoextend the DualReadout in crystals • used in homogeneouscalorimeters . In thesecrystals a fractionof the light yieldis due • toCherenkovemission (1% in BGO, up to 15% in PWO). • The peculiarfeaturesof the Cherenkov light can • beexploitedto separate the twotypesof light: • directionality : cos θ = 1/βn • timing : Cherenkov light isprompt (fewns) while • scintillation light hasdecaycostant. • Spectralproperties: 1/λ²distribution • One more tool: polarizationof the Cherenkov light. PbWO4 Yellow filter long decaytail UV filter prompt light PbWO4 BGO (Signalsafteran UV filter)

  5. Polarization in dualread out • Cherenkov light isemittedbymoleculesthat are excited and polarizedby a • superluminal particlecrossing the medium. • The moleculesemitcoherentradiation at an angle θC =arcos (1/βn) with • respectto the particledirectonand with the polarizationvectorperpendicularto • the conewhosecentralaxisis the particletrack. • Then the Cherenkovcomponent can beseparatedfrom the scintillation • light by a polarizerin frontofthe PMT. • Thiswasdoneby the DREAM Collaboration in the 2010 test beam. • (see NIM A 638 (2011) 47-54.

  6. Side Top view Edge Mostlyhorizontal polarization • 180 GeV/c pionbeamcrossing a BSO crystal at 30°, • UV filterfollowedby a polarizerto separate the Cherenkov light. Cherenkov Scintillation θ

  7. BSO vs BGOcrystals • High density scintillatingcrystals are usedasexcellente.m.calorimeters • buttheyhavepoor performance for detection ofhadrons and jets • (verylarge e/h ratio). • The possibilityto separate the Scintillation/Cherenkovcomponents in • crystalsdemonstratedby the DREAM Collab. allowstoextend • the dual-readoutalso in e.m.crystalscalorimeters. • Extensivestudieshavebeenperformed in the pastby the DREAM • Collaboration on PWO and BGO crystals (see NIMA) . • A recent test beamcomparedtwocrystalsof BSO (BismuthSilicate) and • BGO (BismuthGermanate) ofequaldimensions ( 2.2 x 2.2 x 18 cm³). Now on NIM A 640 (2011) 91-98

  8. Averagesignals UV filter • Crystals on a rotating • platform, • UV filter (UG11/U330) • forCherenkov PMT • Yellow filter • forScintillation PMT Cherenkov PMT θ Yellow filter 180 GeVpions Scintillation PMT • Fasterscintillation in BSO ( Scint. yield BGO / BSO ≈ 4), • Sameattenuantionlength (Cher. and Scint.) ≈ 34 cm , • AbsorptionforCherenkov (1/λ²) smaller in BSO , • Cherenkovyield BSO / BGO ≈ 5 with UV330 , lesswith UG11. Time (ns) Deposited Energy (GeV) C/S UG11 filter

  9. BGO Matrix (1) • Often in presentexperiments the e.m. • calorimeterisrealizedwithcrystals and an • hadroniccalorimeterisbehind. • Since the dualread out wasproventobe • possible in crystals, the DREAM Collaboration • has tested a full size BGO Calorimeter • backed by the original DREAM calorimeter. • The e.m. section was a matrix of 100 BGO • crystals, 24 cm long and tapered (2.4 x 2.4 • cm² – 3,2 x 3.2 cm²) from L3 experiment. • A first test performed in 2009 , • see NIMA 610 (2009), 488-501. • In the 2010 test beam 16 PMTs with UG11 • filters (scintillation strongly attenuated).

  10. BGO Matrix (2) • Both Scintillation and Cherenkov signals in the • same PMT read out: signal from scintillation • extracted by a fit on the tail of the signal, • Cherenkov = total – scintillation. • Preliminary results for 100 GeVe.m. shower. • Scintillation- Cherenkovyields = 67 - 8 ph.e./GeV • Work on the extension of the dual readout to • both e.m. and hadronic sections isin progress. Total Onlyscintillator OnlyCherenkov

  11. PWO Matrix • Seven PWO4crystals • doped: 0.3% Molybdenumalready • characterized NIM A621, 212-221. • Eachcrystal: (3 x 3 x 20 cm³) • Both: wavelenght and timing • analysis. Cherenkov side UV 330 filters Scintillation side Yellow filters beam 4 5 Scintillation Cherenkov 1 2 3 σ = 1,2 % σ = 5,0 % 8 9 100 GeVelectrons(work in progress)

  12. DualReadoutwithTiles • DualReadout can bealsoimplemented in a tilesamplingcalorimeter. • A test of a smallprototype 9 x 9 cm²wasperformed in the 2010 test beam. • Twosamplings: 4 x (4mm Lead + 4 mm Quartz + 7mm Scint), for a total of6 R.L. • Separate read out ofCherenkov and scintillation light in eachsampling. Photonis XP 2970 pm S2 4 mm Lead 4 mm Quartz 7 mm Scint. S1 1 phel beam C2 2 phel Hamamatsu R8900 pm C1 • Chargedistribution in C1 PMT for 180 GeV/c muon • Fitof a poissonianfor the Npheconvoluted • with a gaussianwithσ² = a + b ·Nphe . • In bothmodules: Nphe = 1.3 fornormalbeam , • 1.6 for 12° tilted detector. • Averagesignalfor 1 phe = PMT gain. 3 phel IntegratedCharge (unit: 10⁵e )

  13. 80 GeVelectrons in Quartz – Scint. Tiles Ctot vs Scinttot IntegratedCharge(a.u.) • From a Geant4 simulation: 1.7 GeV / 11.3 GeVdeposited in module 1 / 2. • Fromaveragesignals in C1 and C2 and PMT gains : • 58 Nphe/ GeV in module 1 , 47 Nphe / GeV in module 2 • ComparablewithCherenkovcrystalyield.

  14. The New DreamCalorimeter • The DREAM Collaborationisnowpreparing a newprototypeof DREAM like • calorimeterwithbetterperformances. • Twooptions: copper or lead( as the moduletested in 2010), • Extensivestudiesperformedforclearfiberstohave the largestCherenkov light yield, • Samplingfraction : 5% (was 2.6% in the DREAM calorimeter), • Quantum efficiency ~ 50% larger, • Expected 90 Cherenkovphe /GeV , was 18 in DREAM • 1 module: 92 fibers per layer, 46 fiberlayersofeachtype (scintillating/clear) • Dimensionsof the module: 92 x 92 mm², 2,5 m in length • Divided in 4 towersreadoutforCherenkov and Scintillationsignals. • Forcopper : X0 = 2.31 cm , RM = 2,33 cm , λInt = 22.5 cm • Forlead : X0 = 0.92 cm , RM = 2,33 cm , λInt = 25 cm L =92 mm 21 modules : Req = 23.8 cm 16 modules + 12 halfmodules: Req = 24,35 cm

  15. Test of the first NewDreammodule in the 2010 test beam (Pbabsorber) Constantdelay = 2,4 nsfrom Scintillationde-excitation • 2.03·1010 cm/s • 2.05·1010 cm/s Beam impact pointfrom PMT (cm) θ = 51° Delay

  16. A newleadmodulebuilt in Pavia and nextweek in the test beam A coppermodule in preaparationin Pisa willbereadyforOctober test beam.

  17. Conclusions • After the pioneeringtestsof the first DREAM calorimeter, • the DREAM Collaborationhasextensivelystudied the • DualReadout in crystals. • The separationofCherenkov and Scintillation light can beachievedwith • severaltechniquesbased on the peculiarfeaturesof the Cherenkov • radiation. • Dualread-oute.m.calorimeterscomposedwithcrystalshavebeen • testedalsofollowedbyanhadroniccalorimeter (DREAM). • Dualread-out can beusedalso in tilecalorimeters. • The DREAM Collaborationisnowpreparing and testing a newfiber • DualReadoutcalorimeterlargerthan the DREAM calorimeter.

More Related