930 likes | 1.08k Views
计算机辅助文物复原中的若干问题 研究. 潘荣江 panrj@sdu.edu.cn 山东大学计算机科学与技术学院 2005 年 11 月. 基础知识. 1 图形学的研究内容 2 3D data types 3 2 ½ -D Data 4 Reconstruction 5 Range Acquisition Methods. Main Themes. Imaging Representing 2D images Modeling Representing 3D objects Rendering
E N D
计算机辅助文物复原中的若干问题研究 潘荣江 panrj@sdu.edu.cn 山东大学计算机科学与技术学院 2005 年 11 月
基础知识 1 图形学的研究内容 2 3D data types 3 2½-D Data 4 Reconstruction 5 Range Acquisition Methods
Main Themes • Imaging • Representing 2D images • Modeling • Representing 3D objects • Rendering • Constructing 2D images from 3D models • Animation • Simulating changes over time
Modeling--Design • Graphics for Engineering and Architectural System AutoCAD 2002 Interior Design
3D Data Types • Point Data • “Point clouds” • Advantage: simplest data type • Disadvantage: no information on adjacency / connectivity • Volumetric Data • Regularly-spaced grid in (x,y,z): “voxels” • For each grid cell, store • Occupancy (binary: occupied / empty) • Density • Other properties • Popular in medical imaging • CAT scans • MRI
3D Data Types • Advantages: • Can “see inside” an object • Uniform sampling: simpler algorithms • Disadvantages: • Lots of data • Wastes space if only storing a surface • Most “vision” sensors / algorithms returnpoint or surface data
3D Data Types • Surface Data • Polyhedral • Piecewise planar • Polygons connected together • Most popular: “triangle meshes” • Smooth • Higher-order (quadratic, cubic, etc.) curves • Bézier patches, splines, NURBS, subdivision surfaces, etc.
3D Data Types • Advantages: • Usually corresponds to what we see • Usually returned by vision sensors / algorithms • Disadvantages: • How to find “surface” for translucent objects? • Parameterization often non-uniform • Non-topology-preserving algorithms difficult • Implicit surfaces (cf. parametric) • Zero set of a 3D function • Usually regularly sampled (voxel grid) • Advantage: easy to write algorithms that change topology • Disadvantage: wasted space, time
2½-D Data • Image • stores an intensity / color alongeach of a set of regularly-spaced rays in space • Range image • stores a depth along each of a set of regularly-spaced rays in space • Not a complete 3D description • does not store objects occluded (from some viewpoint) • View-dependent scene description
2½-D Data • This is what most sensors / algorithmsreally return • Advantages • Uniform parameterization • Adjacency / connectivity information • Disadvantages • Does not represent entire object • View dependent
2½-D Data • Range images • Range surfaces • Depth images • Depth maps • Height fields • 2½-D images • Surface profiles • xyz maps • …
Related Fields • Computer Vision • Passive range sensing • Rarely construct complete, accurate models • Application: recognition • Metrology • Main goal: absolute accuracy • High precision, provable errors more important than scanning speed, complete coverage • Applications: industrial inspection, quality control, modeling
Related Fields • Computer Graphics • Often want complete model • Low noise, geometrically consistent model more important than absolute accuracy • Application: animated CG characters
Terminology • Range acquisition, shape acquisition, rangefinding, range scanning, 3D scanning • Alignment, registration • Surface reconstruction, 3D scan merging, scan integration, surface extraction • 3D model acquisition
Range Acquisition Taxonomy Mechanical (CMM, jointed arm) Inertial (gyroscope, accelerometer) Contact Ultrasonic trackers Magnetic trackers Industrial CT Rangeacquisition Transmissive Ultrasound MRI Radar Non-optical Sonar Reflective Optical
Range Acquisition Taxonomy Shape from X: stereo motion shading texture focus defocus Passive Opticalmethods Active variants of passive methods Stereo w. projected texture Active depth from defocus Photometric stereo Active Time of flight Triangulation
Touch Probes • Jointed arms with angular encoders • Return position, orientation of tip Faro Arm – Faro Technologies, Inc.
Optical Range Acquisition Methods • Advantages: • Non-contact • Safe • Usually inexpensive • Usually fast • Disadvantages: • Sensitive to transparency • Confused by specularity and interreflection • Texture (helps some methods, hurts others)
Stereo • Find feature in one image, search along epipolar line in other image for correspondence
Stereo • Advantages: • Passive • Cheap hardware (2 cameras) • Easy to accommodate motion • Intuitive analogue to human vision • Disadvantages: • Only acquire good data at “features” • Sparse, relatively noisy data (correspondence is hard) • Bad around silhouettes • Confused by non-diffuse surfaces • Variant: multibaseline stereo to reduce ambiguity
Active Optical Methods • Advantages: • Usually can get dense data • Usually much more robust and accurate than passive techniques • Disadvantages: • Introduces light into scene (distracting, etc.) • Not motivated by human vision
Pulsed Time of Flight • Basic idea: send out pulse of light (usually laser), time how long it takes to return
Pulsed Time of Flight • Advantages: • Large working volume (up to 100 m.) • Disadvantages: • Not-so-great accuracy (at best ~5 mm.) • Requires getting timing to ~30 picoseconds • Does not scale with working volume • Often used for scanning buildings, rooms, archeological sites, etc.
AM Modulation Time of Flight • Modulate a laser at frequencym ,it returns with a phase shift • Note the ambiguity in the measured phase! Range ambiguity of 1/2mn
AM Modulation Time of Flight • Accuracy / working volume tradeoff(e.g., noise ~ 1/500 working volume) • In practice, often used for room-sized environments (cheaper, more accurate than pulsed time of flight)
Triangulation • Most scanners mount camera and light source rigidly, move them as a unit • Moving the Camera and Illumination
Laser Camera Triangulation: Extending to 3D • Possibility #1: add another mirror (flying spot) • Possibility #2: project a stripe, not a dot Object
Triangulation Scanner Issues • Accuracy proportional to working volume • Scales down to small working volume(e.g. 5 cm. working volume, 50 m. accuracy) • Two-line-of-sight problem (shadowing from either camera or laser) • Triangulation angle: non-uniform resolution if too small, shadowing if too big (useful range: 15-30)
Triangulation Scanner Issues • Material properties (dark, specular) • Subsurface scattering • Laser speckle • Edge curl • Texture embossing
Multi-Stripe Triangulation • To go faster, project multiple stripes • But which stripe is which? • Answer #1: assume surface continuity • Answer #2: colored stripes (or dots)
Multi-Stripe Triangulation • Answer #3: time-coded stripes
Time-Coded Light Patterns • Assign each stripe a unique illumination codeover time [Posdamer 82] Time Space
内容 1 绪论 2 平面碎片的拼接 3 曲面碎片边界线的提取 4 旋转型曲面碎片旋转轴和母曲线的估计 5 旋转型曲面碎片的拼接 6 总结与展望
文物 • 文物是人类在历史发展过程中遗留下来的具有历史、艺术、科学价值的遗物和遗迹。 • 珍贵的文物经受了不同程度的破坏和损害。 • 每一次考古发现都会带来大量残缺、破碎的文物。
文物修复 • 文物修复是指从残缺、破碎的文物碎片中清理、修复出完整的文物,还原其本来面目。 • 修复后的文物可以用于考古研究、博物馆展览、商业文化交流等活动中 • 文物修复一般经过清理、拼接、粘合、补缺、全色几道工序。
文物修复的困难 • 文物修复技术性强。 • 修复任务十分繁重,全国现有2000多万件破损文物。 • 操作不当会造成珍贵文物的进一步磨损和破坏。 • 大型文物的搬运、拼接、粘合都比较困难。
计算机辅助文物复原 • 加快文物复原的速度 • 避免修复过程对文物的损害 • 降低文物修复的难度 • 把复原文物的数字模型直接应用于数字博物馆的文物展示和检索中,实现资源共享。 • 在古生物学、事故分析、医学手术、刑事侦查、娱乐游戏、地理分析、自动装配、计算机辅助设计、化学等领域也有应用背景。
辅助修复的内容 • 拼接、补缺和全色可以利用计算机辅助进行。 • 数据获取 • 二维图像: 图像配准 • 三维数据: 多视数据配准 • 缺片填补 • Image inpainting技术 • 基于样本的纹理合成 • 几何数据的空洞填充 • 碎片拼接 • 预处理、提取特征 • 局部拼接 • 整体重建
国内外研究现状 • 美国stanford大学的Forma Urbis Romae项目 • 美国Brown大学的SHAPE项目 • 英国Brunel大学与欧洲十几所大学 3D Murale • Siggraph2005上Mark Pauly 的反问题 • 浙江大学潘云鹤院士敦煌壁画保护与修复 • 西北大学周明全教授兵马俑复原
平面碎片拼接的研究现状 • 自动拼版游戏(jigsaw puzzle) • 拼版大小均匀,形状规则 • 边界拼版 • 完全匹配 • Andrew Glassner彩色照片碎片 • 利用了颜色信息 • 曲线匹配 • 计算碎片间连续匹配的子曲线 • 碎片之间是完全匹配吗?
曲面碎片拼接的研究现状 • 多视数据配准(multiview registration) • 依据视图的重叠部分 • 空间曲线曲面匹配 • 曲线的曲率和挠率 • 曲面的特殊性质 • 如何提取碎片的边界线? • 如何计算边界线的曲率?
边界检测的研究现状 • 没有被三角形链包围的点 • 基于采样点的Voronoi图 • 递归最小二乘法 • Pearson卡方检验和遗传算法 • 最小生成树法 • 精确、整体最优的边界?
旋转型曲面碎片 • 旋转型曲面碎片 • 出土最多,使用最广泛 • 最容易破碎 • 可靠的记时器 • 形制和装饰的变化反映了文化的分布和传播 • 考古学家认为陶器是历史的脊柱
旋转型曲面碎片的研究现状 • 三维Hough变换估计旋转轴 • M-estimator方法估计旋转轴 • 向量枚举法估计旋转轴 • 分两步求解两个自由参数的最小化问题,实现拼接 • 陶器表面的小装饰物? • 重叠检测? • 最优拼接?
本文的工作基础 • 山东大学考古数字博物馆 • 1万余件文物藏品的数字化 • 100多件文物精品三维数据 • 文物信息管理系统 • 网站内容采编系统 • 虚拟展馆及交互漫游系统 • 基于Web的多媒体展示系统 • 计算机辅助文物建模系统