220 likes | 523 Views
Lecture #6 Normal stresses in thin-walled beam. FOREWORD. The calculation of stresses in the wing is generally a statically indeterminate problem, involving three basic mechanical equations: equilibrium, compatibility, constitutive. 2. BASIC EQUATIONS OF SOLID MECHANICS. 3.
E N D
Lecture #6 Normal stresses in thin-walled beam
FOREWORD The calculation of stresses in the wing is generally a statically indeterminate problem, involving three basic mechanical equations: equilibrium, compatibility, constitutive. 2
WAYS TO FIND NORMAL STRESSES IN THE WING There are two major possible ways: 1. General energy-based methods for statically indeterminate problems (effective only for some specific problems). E.g.: Papkovich theorem (will study later). 2. Beam bending theory, accordingly modified to take account of the physical law. 4
LIMITATIONS OF BEAM THEORY Beam theory gives unsatisfactory results in following cases: 1. Low aspect ratio of the wing. 2. Zone of sweptback angle change. 3. Cut-outs or any other irregularities. 7
NORMAL STRESSES IN THIN-WALLED BEAMS The distribution of normal stresses obeys the hypothesis of planar cross sections: For the case of uniform linear material, it comes to be (for a right coordinate triad): 8
CROSS SECTION DISCRETIZATION (CE – conservative estimation, OE – optimistic estimation) The discretization of real cross section is usually used to possess the calculations of moments of inertia and other geometrical properties: - small but complex elements like stringers are substituted by point areas positioned at stringer center of gravity (CE) or at the skin surface (OE); - skins are substituted by center lines (CE); - complex center line is substituted by polygonal curve; - portions of skins are substituted by point areas (CE). 9
CROSS SECTION DISCRETIZATION The problem is to find the moment of inertia. Dimensions: a = 60 mm; h = 22 mm; d1 = 4 mm; d2 = 6 mm; H = 120 mm. 10
CROSS SECTION DISCRETIZATION – variant #1 One option is to substitute the real cross section by center lines with appropriate thick-nesses – usually used in FEA. 11
CROSS SECTION DISCRETIZATION– variant #2 Another option is to use concentrated areas instead of stiffeners and webs – very good discretization. 12
CROSS SECTION DISCRETIZATION– variant #3 Finally, all thin members could be substituted by point areas – ideal for manual calculations. 13
CROSS SECTION DISCRETIZATION– variant #4 If point areas are positioned at the skin surface, the moment of inertia is overestimated which is not recommended. 14
WAYS TO TAKE THE ACCOUNT OF PHYSICAL LAW There are many possible ways, some of them are: 1. Method of sequential loading. 2. Method of variable secant modulus. 3. Method of reduction coefficients (a.k.a. effectiveness factors). The last one is widely used since it is convenient for cross sections with multiple materials, and to study a post-buckling behavior. 15
METHOD OF REDUCTION COEFFICIENTS The reduction coefficient is the ratio between the real stress in the member and the fictitious stress obeying the Hook law : The reduction coefficient is introduced to maintain the condition that fictitious strain is equal to real one: 16
METHOD OF REDUCTION COEFFICIENTS The method of reduction coefficient is iterative one. At the first iteration, we set the initial reduction coefficient as the ratio between Young moduli: Then we calculate fictitious geometrical properties: 17
METHOD OF REDUCTION COEFFICIENTS Next we calculate the fictitious stress and find the real stress, forming a new iteration of reduction coefficient: The process stops when values of reduction coefficients are converged for all points in the section. 18
WHERE TO FIND MORE INFORMATION? Megson. An Introduction to Aircraft Structural Analysis. 2010 Chapter 15 – beam bending theory; Chapter 19 - discretization of the cross section. Method of effectiveness factors (reduction coefficients) is explained in Bruhn. Airplane Design Handbook Chapter A19.11 … Internet is boundless … 20
TOPIC OF THE NEXT LECTURE Shear stresses in thin-walled beam All materials of our course are available at department website k102.khai.edu 1. Go to the page “Библиотека” 2. Press “Structural Mechanics (lecturer Vakulenko S.V.)” 21