90 likes | 242 Views
Chem 300 - Ch 22/#2 Today’s To Do List. Maxwell Relations Natural Independent Variables. Maxwell Relations. dZ = N dx + M dy If an exact differential If Z(x,y) is a state function ( N/ y) x = ( M/ x) y Maxwell Relation Examples: dU = TdS – PdV dH = TdS + VdP
E N D
Chem 300 - Ch 22/#2 Today’s To Do List • Maxwell Relations • Natural Independent Variables
Maxwell Relations • dZ = N dx + M dy • If an exact differential • If Z(x,y) is a state function • (N/y)x = (M/x)y Maxwell Relation • Examples: • dU = TdS – PdV • dH = TdS + VdP • dA = -PdV – SdT • dG = VdP - SdT
Maxwell Continued • ( T/ V)S = - ( P/ S)V • ( T/ P)S = ( V/ S)P • ( P/ T)V = ( S/ V)T S(V) • ( V/ T)P = - ( S/ P)T S(P) • Use the last 2 to get values of S.
S(V) • ( S/ V)T = ( P/ T)V • dST = [( P/ T)V]dV • DS = ∫[( P/ T)V]dV • For Ideal Gas: P = nRT/V • ( P/ T)V = nR/V • DS = ∫nRdV/V = nRln(V2/V1) const T • For V2 > V1DS > 0
S(P) • - ( S/ P)T = ( V/ T)P • dST = - [( V/ T)P]dP • DS = -∫[( V/ T)P]dP • For Ideal Gas: V = nRT/P • ( V/ T)P = nR/P • DS = -∫nRdP/P = - nRln(P2/P1) const T • For P2 > P1DS < 0
U (T, V) • dU = TdS – PdV • ( U/ V)T = T( S/ V)T - P • From Maxwell: • dA = - PdV – SdT • ( S/ V)T = ( P/ T)V subst. above. • ( U/ V)T = T ( P/ T)V – P (Internal Pressure) • For ideal gas: ( P/ T)V = [(RT/V)/ T]V = R/V • ( U/ V)T = T (R/V) – P = RT/V – P = P – P = 0 • Thus for Ideal Gas: U = f (T only)
H (T, P) • dH = TdS + VdP • ( H/ P)T = T( S/ P)T+V • From Maxwell: • dG = VdP – SdT • ( S/ P)T = - ( V/ T)P subst. above. • ( H/ P)T = - T( V/ T)P + V • For ideal gas: ( V/ T)P = [(RT/P)/ T]V = R/P • ( H/ P)T = - T(R/P) + V = - RT/P – V = -V + V = 0 • Thus for Ideal Gas: H = f (T only)
“Natural” Independent Variables • U = f(S, V) • H = f(S, P) • A = f(V, T) • G = f(P, T)
Next Time • Gibbs-Helmholtz Equation • Fugacity