640 likes | 661 Views
This comprehensive guide covers dividing a line into unequal segments, ellipse, parabola, hyperbola, and tangent and normal to conics. Learn to draw ellipses using major and minor axes effectively.
E N D
Anjuman College of Engineering & Technology EngineeringGraphics -I Unit-I Prof. Ravindra R Paliwal Department of Mechanical Engineering
ConicSections distanceof thepointfromthefocus Eccentricity= distanceof thepointfromdirectrix e<1⇒Ellipse,e=1⇒Parabolaande>1⇒Hyperbola.
ConicSections Anellipse⇒Section plane AA,inclinedtothe axiscuts allthe generatorsofthe cone. 1 Aparabola⇒Section plane BB,parallel tooneofthe generatorscuts the cone. 2 Ahyperbola ⇒Section plane CC,inclinedtothe axiscuts the coneonone sideofthe axis. 3 Arectangularhyperbola ⇒ Section plane DD,parallel tothe axiscuts the cone. 4
EllipsebyDirectrixandFocus e=2/3 andfocusdistancefromdirectrixisknown. DivideCFinfiveequal segments.DrawVE⊥CF and VF=VE. 1
EllipsebyDirectrixandFocus e=2/3 andfocusdistancefromdirectrixisknown. DivideCFinfiveequal segments.DrawVE⊥CF and VF=VE. 1 Extend CEtocoverthe horizontal span ofthe ellipse. 2
EllipsebyDirectrixandFocus e=2/3 andfocusdistancefromdirectrixisknown. DivideCFinfiveequal segments.DrawVE⊥CF and VF=VE. 1 Extend CEtocoverthe horizontal span ofthe ellipse. 2 Drawavertical at 1. 3
EllipsebyDirectrixandFocus e=2/3 andfocusdistancefromdirectrixisknown. DivideCFinfiveequal segments.DrawVE⊥CF and VF=VE. 1 Extend CEtocoverthe horizontal span ofthe ellipse. 2 Drawavertical at 1. 3 Usethe compass tomeasure 11‘ and mark P1 and P‘ 4 1 fromF.
EllipsebyDirectrixandFocus e=2/3 andfocusdistancefromdirectrixisknown. DivideCFinfiveequal segments.DrawVE⊥CF and VF=VE. 1 Extend CEtocoverthe horizontal span ofthe ellipse. 2 Drawavertical at 1. 3 Usethe compass tomeasure 11‘ and mark P1 and P‘ 4 1 fromF. Anypoint,P2 orP0,isC2distanceapartfromthedirectrixandFP2 2 orFP0 apartfromthefocus. 2
EllipsebyDirectrixandFocus e=2/3 andfocusdistancefromdirectrixisknown. DivideCFinfiveequal segments.DrawVE⊥CF and VF=VE. 1 Extend CEtocoverthe horizontal span ofthe ellipse. 2 Drawavertical at 1. 3 Usethe compass tomeasure 11‘ and mark P1 and P‘ 4 1 fromF. Anypoint,P2 orP0,isC2distanceapartfromthedirectrixandFP2 2 orFP0 apartfromthefocus. 2
EllipsebyDirectrixandFocus e=2/3 andfocusdistancefromdirectrixisknown. DivideCFinfiveequal segments.DrawVE⊥CF and VF=VE. 1 Extend CEtocoverthe horizontal span ofthe ellipse. 2 Drawavertical at 1. 3 Usethe compass tomeasure 11‘ and mark P1 and P‘ 4 1 fromF. Anypoint,P2 orP0,isC2distanceapartfromthedirectrixandFP2 2 orFP0 apartfromthefocus. 2
EllipsebyDirectrixandFocus e=2/3 andfocusdistancefromdirectrixisknown. DivideCFinfiveequal segments.DrawVE⊥CF and VF=VE. 1 Extend CEtocoverthe horizontal span ofthe ellipse. 2 Drawavertical at 1. 3 Usethe compass tomeasure 11‘ and mark P1 and P‘ 4 1 fromF. Anypoint,P2 orP0,isC2distanceapartfromthedirectrixandFP2 2 orFP0 apartfromthefocus. 2
EllipsebyDirectrixandFocus e=2/3 andfocusdistancefromdirectrixisknown. DivideCFinfiveequal segments.DrawVE⊥CF and VF=VE. 1 Extend CEtocoverthe horizontal span ofthe ellipse. 2 Drawavertical at 1. 3 Usethe compass tomeasure 11‘ and mark P1 and P‘ 4 1 fromF. Anypoint,P2 orP0,isC2distanceapartfromthedirectrixandFP2 2 orFP0 apartfromthefocus. 2
Tangent andNormalstoConics When atangentat any point onthe curveis produced tomeet the directrix, the linejoiningthe focuswiththismeeting point willbeat right angles tothe linejoiningthe focus withthe point ofcontact. 1
Tangent andNormalstoConics When atangentat any point onthe curveis produced tomeet the directrix, the linejoiningthe focuswiththismeeting point willbeat right angles tothe linejoiningthe focus withthe point ofcontact. 1
Tangent andNormalstoConics When atangentat any point onthe curveis produced tomeet the directrix, the linejoiningthe focuswiththismeeting point willbeat right angles tothe linejoiningthe focus withthe point ofcontact. 1
Tangent andNormalstoConics When atangentat any point onthe curveis produced tomeet the directrix, the linejoiningthe focuswiththismeeting point willbeat right angles tothe linejoiningthe focus withthe point ofcontact. 1
EllipsefromMajorandMinorAxis Drawmajor and minoraxes and twocircles. 1
EllipsefromMajorandMinorAxis Drawmajor and minoraxes and twocircles. 1 Divideitforsufficientpoints todrawthe ellipse. 2
EllipsefromMajorandMinorAxis Drawmajor and minoraxes and twocircles. 1 Divideitforsufficientpoints todrawthe ellipse. 2 Drawavertical at 1. 3
EllipsefromMajorandMinorAxis Drawmajor and minoraxes and twocircles. 1 Divideitforsufficientpoints todrawthe ellipse. 2 Drawavertical at 1. Drawhorizontal at 1‘ 3 4
EllipsefromMajorandMinorAxis Drawmajor and minoraxes and twocircles. 1 Divideitforsufficientpoints todrawthe ellipse. 2 Drawavertical at 1. Drawhorizontal at 1‘ Repeat the procedure described inthe last two steps 3 4 5
EllipsefromMajorandMinorAxis Drawmajor and minoraxes and twocircles. 1 Divideitforsufficientpoints todrawthe ellipse. 2 Drawavertical at 1. Drawhorizontal at 1‘ Repeat the procedure described inthe last two steps 3 4 5
EllipsefromMajorandMinorAxis Drawmajor and minoraxes and twocircles. 1 Divideitforsufficientpoints todrawthe ellipse. 2 Drawavertical at 1. Drawhorizontal at 1‘ Repeat the procedure described inthe last two steps 3 4 5
EllipsebyOblongmethod DivideAOand AEinequal segments (4) 1
EllipsebyOblongmethod DivideAOand AEinequal segments (4) Join1‘,2‘ and 3‘ toC 1 2
EllipsebyOblongmethod DivideAOand AEinequal segments (4) Join1‘,2‘ and 3‘ toC Join1,2and 3withDand extend 1 2 3
EllipsebyOblongmethod DivideAOand AEinequal segments (4) Join1‘,2‘ and 3‘ toC Join1,2and 3withDand extend 1 2 3 Onvertical P2P11 cut P2x=xP11 4
EllipsebyOblongmethod DivideAOand AEinequal segments (4) Join1‘,2‘ and 3‘ toC Join1,2and 3withDand extend 1 2 3 Onvertical P2P11 cut P2x=xP11 Onhorizontal P2P5 cut P2y=yP5 4 5
EllipsebyOblongmethod DivideAOand AEinequal segments (4) Join1‘,2‘ and 3‘ toC Join1,2and 3withDand extend 1 2 3 Onvertical P2P11 cut P2x=xP11 Onhorizontal P2P5 cut P2y=yP5 Findother point similarly 4 5 6
EllipsebyOblongmethod DivideAOand AEinequal segments (4) Join1‘,2‘ and 3‘ toC Join1,2and 3withDand extend 1 2 3 Onvertical P2P11 cut P2x=xP11 Onhorizontal P2P5 cut P2y=yP5 Findother point similarly 4 5 6
Parabolaforagivenfocusdistance Bisect CFforthe vertexV withproper process. 1
Parabolaforagivenfocusdistance Bisect CFforthe vertexV withproper process. 1 Drawavertical at 1and cut FP‘ and FP1 =C1. 2 1
Parabolaforagivenfocusdistance Bisect CFforthe vertexV withproper process. 1 Drawavertical at 1and cut FP‘ and FP1 =C1. 2 1 Repeat formorepoints. 3
Parabolaforagivenfocusdistance Bisect CFforthe vertexV withproper process. 1 Drawavertical at 1and cut FP‘ and FP1 =C1. 2 1 Repeat formorepoints. 3
Parabolaforagivenbaseandaxis Drawthe baseABand axis EFfrommidpoint E. 1
Parabolaforagivenbaseandaxis Drawthe baseABand axis EFfrommidpoint E. 1 ConstructrectangleABCD and divideABand CDin equal parts. 2
Parabolaforagivenbaseandaxis Drawthe baseABand axis EFfrommidpoint E. 1 ConstructrectangleABCD and divideABand CDin equal parts. 2 DrawlinesF1,F2,F3and perpendiculars1‘P1,2‘P2 and 3‘P3. 3
Parabolaforagivenbaseandaxis Drawthe baseABand axis EFfrommidpoint E. 1 ConstructrectangleABCD and divideABand CDin equal parts. 2 DrawlinesF1,F2,F3and perpendiculars1‘P1,2‘P2 and 3‘P3. Cut points likeP‘.... 3 4 1
Parabolaforagivenbaseandaxis Drawthe baseABand axis EFfrommidpoint E. 1 ConstructrectangleABCD and divideABand CDin equal parts. 2 DrawlinesF1,F2,F3and perpendiculars1‘P1,2‘P2 and 3‘P3. Cut points likeP‘.... 3 4 1
ParabolainParrallelogram Followsimilarprocess.
Hyperbolaforagiveneccentricity Followsimilarprocess.
RectangularHyperbolathroughagivenpoint (e=√2and equationmaybeassumed asxy=1not x2−y2 =1) Drawthe axesOA,OBand mark point P. 1
RectangularHyperbolathroughagivenpoint (e=√2and equationmaybeassumed asxy=1not x2−y2 =1) Drawthe axesOA,OBand mark point P. 1 DrawCDkOA,EFkOB. 2
RectangularHyperbolathroughagivenpoint (e=√2and equationmaybeassumed asxy=1not x2−y2 =1) Drawthe axesOA,OBand mark point P. 1 DrawCDkOA,EFkOB. Markpoints 1,2,3... (may not beequidistant) 2 3
RectangularHyperbolathroughagivenpoint (e=√2and equationmaybeassumed asxy=1not x2−y2 =1) Drawthe axesOA,OBand mark point P. 1 DrawCDkOA,EFkOB. Markpoints 1,2,3... (may not beequidistant) 2 3 JoinO1and 1P1 kOB and 1‘P1 kOAtofindP1 4