120 likes | 296 Views
Generation of laser-driven secondary sources and applications. Patrizio Antici Istituto Nazionale di Fisica Nucleare Università di Roma “Sapienza”. ELI-NP for exploring new proton energy regimes. 100. 10. Nova PW. RAL Vulcan. 300fs – 1 ps. RAL PW. 1. RAL Vulcan. 40-60 fs. LULI.
E N D
Generation of laser-driven secondary sources and applications Patrizio Antici Istituto Nazionale di Fisica Nucleare Università di Roma “Sapienza”
ELI-NP for exploring new proton energy regimes 100 10 Nova PW RAL Vulcan 300fs – 1 ps RAL PW 1 RAL Vulcan 40-60 fs LULI RAL Vulcan 100-150 fs Janusp CUOS Osaka LOA MPQ Tokyo Tokyo I0.5 0.1 ASTRA b) Tokyo Yokohama I 16 17 18 19 20 21 10 10 10 10 10 10 2 -2 2 l I (W.cm .µm ) Projected proton energies for use of different applications ? New and different acceleration regimes ? Standart targets (5-50 µm) ? Ultra-thin targets (30-200 nm) T. Ceccotti et al., PRL 99, 185002 (2007) D. Neely et al., Appl. Phys. Lett. 89, 021502 (2006) A. Flacco et al., PRE 81, 03604 (2010) ? Normalized intensity (I² - W/cm²/µm²) J. Fuchs et al., Nat. Phys. 2, 46-54 (2006) J. Schreiber et al., PRL 97, 045005 (2006) L. Robson et al Nat. Phys. 3, 58–62 (2007) P.Antici et al., Phys. of Plasma14, 030701 (2007)
Proton max energy [MeV] Experimental data 10000 ELI S imulations GeV [MeV ] 1000 APOLLON LULI ELFIE 100 energy Existing Projected 10 1 16 18 20 22 24 10 10 10 l 10 10 I ² (W.cm ) - 2 Proton maximum New acceleration regimes (non TNSA) are upcoming and can be tested with ELI-NP RPA (no hot electrons !) Simulations Experiment (current max 10-20 MeV but less energy spread Monoenergetic spectrum A. Henig et al., RPL 103 245003 (2009) A. Robinson et al., New J. Phys. 10, 013021 (2008), A. Robinson et al., Plasma Phys. Control. Fusion 51, 024004 (2009) ; N. Naumova et al., Phys. Rev. Lett. 102, 025002 (2009) ; T. Schlegel et al., Phys. Plasmas 16, 083103 (2009) ; A. Macchi et al., Phys. Rev. Lett. 94, 165003 (2005); B. Quiao et al., Phys. Rev. Lett., 102, 145002 (2009). X.Q.Yan et al., APB 711 (2010)
Obvious route: « brute force » (laser energy increase) TNSA enhancement for energy increase: beyond present-day record of 67 MeV? • 2: Use of low-density plasmas • 3: Geometrical e- confinement • 4: Tightest laser focusing • More clever strategies? • 1: Decrease the target thickness (less e- spread + volumetric target heating) P. Antici et al., New Journal of Physics 11 (2009) A. Yogo et al., PRE 77, 016401 (2008) L. Willingale et al., Phys. Rev. Lett. 96 245002 (2006) S. Buffechou et al., PRL 105 015005 (2010) P. Antici et al., NIMA 2010.01.052 (2010) P. Antici et al., Phys. Plasmas 14, 030701, (2007) T. Ceccotti et al., PRL 99, 185002 (2007) D. Neely et al., Appl. Phys. Lett. 89, 021502 (2006) A. Flacco et al., PRE 81, 03604 (2010) M. Nakatsutsumi et al., submitted (2009)
Hybrid accelerator schemes perfectly suited for ELI-NP ELI-NP can combine innovative plasma acceleration sources with conventional accelerator technology Laser-generated particle source Capturing section Accelerating and transporting section Protons Electrons Plasma accelerator Conventional accelerator
Improvements using beam shaping and post-acceleration with conventional accelerators First start-to-end simulations P. Antici et al., JAP 104, 124901 (2008) Injection studied using RF-cavity Combined accelerator S. Nakamura et al. Jap Jour. Appl. Phys. 46 L717 (2007) Logan, Caparasso, Roth, Cowan, Ruhl et al. (LBNL-LLNL-GSI-GA) (2000) Focalisation using Quadrupoles M. Schollmeier et al., PRL 101, 055004 (2008)
Beam shaping with conventional accelerators becomes more fashionable Transport with 1 Hz Focalisation with Solenoids K. Harres et al J. Phys Conf. Series 244 022036 (2010) F. Nürnberg et al., PAC 2009 M. Nishiuchi et al Phys Rev STAB 13 071304 (2010), 5% spread, 10% efficiency Post-acc with modified DTL V. Bagnoud et al., APB (2009) A. Almomani et al., Proceeding IPAC (2010) 8 T solenoid
ELI-NP can test innovative accelerator structures such as SCDTLs that outperform other structures Side Coupled DTLs (3 GHz) New hybrid accelerator scheme + Normalized energy spectrum for 100 mA input current and two different lengths of the leading drift. Proton energy evolution within the SCDTL Transmission (red points), output norm. envelope (blue points) versus the input current P. Antici et al., PoP (in press)
ELI-NP can also test beam-handling/matching of a laser-driven electron beam line ? Conventional accelerator can tailor laser-driven beams and make them adaptable to all applications Laser-generated source Laser-generated particle distribution Matching line Focusing and trasporting line Usable beams
ELI-NP allows to explore WDM regimes currently unreached Higher efficiency proton beams will allow reaching unexplored hotter plasma zones (R P A: 60 % efficiency, compared to 4 % TNSA) • Understanding of transition phases and thermo-dynamical properties • Laboratory astrophysics (conditions only existing in stellar interiors) 50 eV Stopping power Equation of state
ELI-NP can be used also for experiments in the ICF or related applications • Higher proton energy for probing thicker material • Higher laser energy for higher energy electrons • Tailoring of heating temperature Higher intensity laser = brighter beams allows measurement of hotter electron transport 3 1 2 3 Ultra-intense laser beams
…and much more…. Thank you for your attention !