110 likes | 119 Views
Learn how to derive and write the equation of circles with given centers and radii. Explore examples step by step. Practice mathematical reasoning and problem-solving skills.
E N D
Equations of Circles Concept 44
Content Standards G.GPE.1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. G.GPE.6 Find the point on a directed line segment between two given points that partitions the segment in a given ratio. Mathematical Practices 2 Reason abstractly and quantitatively. 7 Look for and make use of structure. CCSS
1. Write the equation of the circle with a center at (3, –3) and a radius of 6. (x – h)2 + (y – k)2 = r2 Equation of circle (x – 3)2 + (y – (–3))2 = 62 Substitution (x – 3)2 + (y + 3)2 = 36 Simplify. Answer:(x – 3)2 + (y + 3)2 = 36 Example 1
2. Write the equation of the circle graphed to the right. The center is at (1, 3) and the radius is 2. (x – h)2 + (y – k)2 = r2 Equation of circle (x – 1)2 + (y – 3)2 = 22 Substitution (x – 1)2 + (y – 3)2 = 4 Simplify. Answer:(x – 1)2 + (y – 3)2 = 4 Example 1
3. Write the equation of the circle with a center at (2, –4) and a radius of 4. A.(x – 2)2 + (y + 4)2 = 4 B.(x + 2)2 + (y – 4)2 = 4 C.(x – 2)2 + (y + 4)2 = 16 D.(x + 2)2 + (y – 4)2 = 16 Example 1
4. Write the equation of the circle graphed to the right. A.x2 + (y + 3)2 = 3 B.x2 + (y – 3)2 = 3 C.x2 + (y + 3)2 = 9 D.x2 + (y – 3)2 = 9 Example 1
5. List the center and radius length of the circle with the formula x2 + (y + 3)2 = 9. x2 + (y + 3)2 = 9 (x – 0) 2 + (y – -3)2 = (3) 2 (0, -3) R = 3
6. List the center and radius length of the circle with the formula (x + 3)2 + (y – 2)2 = 18 (x – -3)2 + (y – 2)2 = 18
7. Write the equation of the circle that has its center at (–3, –2) and passes through (1, –2). (x – h)2 + (y – k)2 = r2 (x + 3)2 + (y + 2)2 = r2 Plug it in (1 + 3)2 + (-2 + 2)2 = r2 (4)2 + (0)2 = r2 16 = r2 Answer:(x + 3)2 + (y + 2)2 = 16 Example 2
8. Write the equation of the circle that has its center at (–1, 0) and passes through (3, 0). (x – h)2 + (y – k)2 = r2 (x + 1)2 + (y + 0)2 = r2 Plug it in (3 + 1)2 + (0 + 0)2 = r2 (4)2 + (0)2 = r2 16 = r2 Answer:(x + 1)2 + y2 = 16 Example 2