240 likes | 283 Views
Test Data Generation for LRU Cache-Memory Testing. Evgeny Kornikhin Moscow State University Institute for System Programming of RAS. testing by test programs. add r1,r2,r3 sub r4, r1, r2 lw r5, r1, 0 lui r2, r1, r4. Y/N. assembly program ( test program ). microprocessor.
E N D
Test Data Generation for LRU Cache-Memory Testing Evgeny KornikhinMoscow State UniversityInstitute for System Programming of RAS
testing by test programs add r1,r2,r3sub r4, r1, r2lw r5, r1, 0lui r2, r1, r4 Y/N assembly program ( test program ) microprocessor
test program generation model of microprocessor coverage oftest situations and dependencies (r-w, r-r) add r1,r2,r3 @ overflow lw r4, r3, c @ hit test templates (logical form) mov r2, 0xFF add r1,r2,r3 lw r4, r3, 0 test programs (executable form)
R4000 add load ... args test situations cache rd rs rt overflow regular test program generation model of microprocessor coverage oftest situations and dependencies (r-w, r-r) add r1,r2,r3 @ overflow lw r4, r3, c @ hit test templates (logical form) mov r2, 0xFF add r1,r2,r3 lw r4, r3, 0 test programs (executable form)
R4000 add load ... args test situations cache rd rs rt overflow regular test program generation model of microprocessor coverage oftest situations and dependencies (r-w, r-r) add r1,r2,r3 @ overflow lw r4, r3, c @ hit test templates (logical form) mov r2, 0xFF add r1,r2,r3 lw r4, r3, 0 test programs add specific initialization of microprocessor (registers and cache) (executable form)
cache-hit cache model tag0' value0' tag0'' value0'' set №0 LOAD val, addr (val := memory[addr]) t' v' t'' v'' set №s
cache-hit cache model tag0' value0' tag0'' value0'' set №0 LOAD val, addr (val := memory[addr]) addr t = t' ort = t'' t s t = t'' tag set t' v' t'' v'' set №s
cache-miss cache model tag0' value0' tag0'' value0'' set №0 LOAD val, addr (val := memory[addr]) nextlevel addr t != t' andt != t'' t s tag set t' v' t'' v'' set №s evicted
LOAD x, y @ hitSTORE u, z @ missLOAD z, y @ hit problem again initial state of cacheand registers = ?
key idea test template add ...load …sub …div … LOAD x, y @ hit constraint variable ? ? ? ? y {a,b,c} ? ? variable u {a,b,c} cache model x = z
fully associative cache z x z x y ... N y {x,y,z,...} - current state
cache-hit hit(t) z t x z x y ... N y t {x,y,z...}
cache-miss miss(t) z t x z x y ... N y t {x,y,z...} newcache={x,y,z...}{t}\{?}
cache-miss miss(t)→u z t x z x y ... N y t {x,y,z...} u{x,y,z...} newcache={x,y,z...}{t}\{u}
lru(u) hit x1 u = x2 hit x2 {x3, x5} = L\{u} miss x3->x4 hit x5 L miss t->u counter(u)=min
lru(u) hit x1 u = x1 hit x2 {x2, x3, x5} = L\{u} miss x3->x4 hit x5 L miss t->u there are another cases
example a initialstate: b y{a,b,g} g z{a,b,g} LOAD x, y @ hit z0{a,b,g} →z0 STORE u, z @ miss z0=b {a,b,g}\{z0}={g,y} LOAD z, y @ hit y{a,b,g,z}\{z0} N = 3
example z{a,b,g} y = a y{a,b,g} z{a,b,g} y=a=0 z0{a,b,g} z0=b {a,b,g}\{z0}={g,y} b=1 g=2 z=3 y{a,b,g,z}\{z0}
common cache x x R(x) y R(y) y z z R(z)
common cache hit(t) t L miss(t)→u u Lt L new cache=L{t}\{u}R(t) = R(u)lru(u)
lru(u) hit x1 hit x2 u = x2 {x3, x5}∩R(u) = (L\{u})∩R(u) miss x3→x4 hit x5 miss t→u
example x1,x2 {a1,a2,b1,b2,c1,c2} x3 {a1,a2,b1,b2,c1,c2} R(x3) = R(y3) x4 {a1,...,c2,x3}\{y3} x5 {a1,...,c2,x3}\{y3} y3 = c2 {y3} = ({a1,...,c2}\{x1,x2, y3})∩R(y3) y5 = x2 {y5} = ({a1...c2,x3}\{y3,y5, x3,x4})∩R(y5)
SAT modulo theories (bit-vectors) Yices solver (assert (or (= x a) (= x b)(= x c))) x {a,b,c} y {a,b,c} (assert (and (/= y a) (/= y b)(/= y c))) x = z (check) SMT
http://tesla-project.googlecode.com http://hardware.ispras.ru kornevgen@gmail.com contacts