150 likes | 226 Views
6. 6. 6. 6. 5. 7. 7. 5. Can graphene allotropes surpass the high thermal conductivity of graphene?. Zacharias G. Fthenakis, Zhen Zhu and David Tománek Michigan State University. Why studying the thermal conductivity?. On-chip power density the last two decades (Moore’s Law).
E N D
6 6 6 6 5 7 7 5 Can graphene allotropes surpass the high thermal conductivity of graphene? Zacharias G. Fthenakis, Zhen Zhu and David Tománek Michigan State University T8-4 (Fthenakis, Zhu, Tomanek)
Why studying the thermal conductivity? On-chip power density the last two decades (Moore’s Law) Laptop on fire Heat is a problem in nano-electronics Pop et al, Proc. IEEE 94, 1587 (2006) T8-4 (Fthenakis, Zhu, Tomanek)
Why studying the thermal conductivity of carbon nanostructures? 4000 3500 3000 2500 2000 1500 1000 500 0 Thermal Conductivity λ (W/m K) 0 100 200 300 400 500 600 700 Temperature K cV = specific heat per volume vs = speed of sound Ī = phonon mean free path Experimental thermal conductivity of graphene (A. A. Balandin, Nature Materials10, 569 (2011)) How do defects affect thermal conductivity? Thermal conductivity for a (10,10) nanotube (S. Berber, Y.-K. Kwong and D. Tomanek, Phs. Rev. Lett. 84, 4613 (2000)) T8-4 (Fthenakis, Zhu, Tomanek)
200000 150000 100000 50000 0 Thermal conductivity of defective graphene Graphene with 13C isotopic impurities 13Cx12C1-x x=0.00 x=0.05 vacancies 1% Narrow ribbon (11Å width) with 13C impurities and vacancies Z. G. Fthenakis and D. Tománek, Phys. Rev. B 86, 125418 (2012) T8-4 (Fthenakis, Zhu, Tomanek)
What about Stone-Wales defects? • Graphene allotropes = Periodically arranged Stone-Wales defects • Infinite number of different structures. We focus on pentaheptites (5-7) • QUESTION: How do periodically arranged Stone-Wales defects affect thermal conductivity? T8-4 (Fthenakis, Zhu, Tomanek)
Methods to study thermal conductivity λ L • Direct Molecular Dynamics (usually L < mean free path) • Equilibrium Molecular Dynamics(Green-Kubo formula) (convergence is very slow) • Non Equilibrium Molecular Dynamics ΗΟΤ COLD Heat Flux J Fe T8-4 (Fthenakis, Zhu, Tomanek)
Heat bath Non Equilibrium Molecular Dynamics Tersoff Potential Nose – Hoover Thermostat Non equilibrium driving forces . i Thermal Conductivity Heat Flux T8-4 (Fthenakis, Zhu, Tomanek)
Details of Molecular Dynamics • Solving the equations of motion for various Fe using periodic boundary conditions • About 30-50 different Fe values for each T • Extrapolation • N = 100 – 400 atoms • Simulation time t = 0.2 – 2 nsec (Δt = 0.2 fsec, maximum 107 time steps) • Structures: Pentaheptite (5-7) and pentaheptite lines T8-4 (Fthenakis, Zhu, Tomanek)
y x RESULTS A. Pentaheptites (5-7) A B T8-4 (Fthenakis, Zhu, Tomanek)
graphene ribbon 1% vacancies y x RESULTS A. Pentaheptites (5-7) A B Same anisotropy for A and B T8-4 (Fthenakis, Zhu, Tomanek)
graphene nanoribbon (11Å width) graphene with 1% vacancies B. A single line of 5-7 Stone-Wales defects (GRAIN BOUNDARIES) initially T=300K N=160 N=32 + L T8-4 (Fthenakis, Zhu, Tomanek)
Conclusions • 5-7 haeckelites exhibit much smaller thermal conductivity (λ) than graphene • λ values for 5-7 haeckelites are similar to those found for 1% vacancies and narrow nanoribbons • Anisotropy (different thermal conductivity for different directions) • Stone-Wales grain boundaries affects significantly the thermal conductivity of graphene Thank you T8-4 (Fthenakis, Zhu, Tomanek)