1 / 46

Aquatic Biodiversity

Aquatic Biodiversity. Overview Questions. What are the basic types of aquatic life zones and what factors influence the kinds of life they contain? What are the major types of saltwater life zones, and how do human activities affect them?

hockett
Download Presentation

Aquatic Biodiversity

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Aquatic Biodiversity

  2. Overview Questions • What are the basic types of aquatic life zones and what factors influence the kinds of life they contain? • What are the major types of saltwater life zones, and how do human activities affect them? • What are the major types of freshwater life zones, and how do human activities affect them?

  3. Core Case Study:Why Should We Care About Coral Reefs? • Coral reefs form in clear, warm coastal waters of the tropics and subtropics. • Formed by massive colonies of polyps. Figure 6-1

  4. Fig. 6-1a, p. 126

  5. Fig. 6-1b, p. 126

  6. Core Case Study:Why Should We Care About Coral Reefs? • Help moderate atmospheric temperature by removing CO2 from the atmosphere. • Act as natural barriers that help protect 14% of the world’s coastlines from erosion by battering waves and storms. • Provide habitats for a variety of marine organisms.

  7. AQUATIC ENVIRONMENTS • Saltwater and freshwater aquatic life zones cover almost three-fourths of the earth’s surface Figure 6-2

  8. AQUATIC ENVIRONMENTS Figure 6-3

  9. What Kinds of Organisms Live in Aquatic Life Zones? • Aquatic systems contain floating, drifting, swimming, bottom-dwelling, and decomposer organisms. • Plankton: important group of weakly swimming, free-floating biota. • Phytoplankton (plant), Zooplankton (animal), Ultraplankton (photosynthetic bacteria) • Necton: fish, turtles, whales. • Benthos: bottom dwellers (barnacles, oysters). • Decomposers: breakdown organic compounds (mostly bacteria).

  10. Life in Layers • Life in most aquatic systems is found in surface, middle, and bottom layers. • Temperature, access to sunlight for photosynthesis, dissolved oxygen content, nutrient availability changes with depth. • Euphotic zone (upper layer in deep water habitats): sunlight can penetrate.

  11. Natural Capital Marine Ecosystems Economic Services Ecological Services Climate moderation Food CO2 absorption Animal and pet feed Nutrient cycling Pharmaceuticals Waste treatment Harbors and transportation routes Reduced storm impact (mangroves, barrier islands, coastal wetlands) Coastal habitats for humans Recreation Habitats and nursery areas Employment Genetic resources and biodiversity Oil and natural gas Minerals Scientific information Building materials Fig. 6-4, p. 129

  12. The Coastal Zone: Where Most of the Action Is • The coastal zone: the warm, nutrient-rich, shallow water that extends from the high-tide mark on land to the gently sloping, shallow edge of the continental shelf. • The coastal zone makes up less than 10% of the world’s ocean area but contains 90% of all marine species. • Provides numerous ecological and economic services. • Subject to human disturbance.

  13. High tide Sun Open Sea Coastal Zone Sea level Low tide Photosynthesis Euphotic Zone Estuarine Zone Continental shelf Bathyal Zone Twilight Abyssal Zone Darkness Fig. 6-5, p. 130

  14. Marine Ecosystems • Scientists estimate that marine systems provide $21 trillion in goods and services per year – 70% more than terrestrial ecosystems. Figure 6-4

  15. Natural capital degradation: view of an estuary taken from space. The photo shows the sediment plume at the mouth of Madagascar’s Betsiboka River as it flows through the estuary and into the Mozambique Channel. Because of its topography, heavy rainfall, and the clearing of forests for agriculture, Madagascar is the world’s most eroded country. Fig. 6-6, p. 130

  16. Estuaries and Coastal Wetlands: Centers of Productivity • Estuaries include river mouths, inlets, bays, sounds, salt marshes in temperate zones and mangrove forests in tropical zones. Figure 6-7

  17. Herring gulls Peregrine falcon Snowy Egret Cordgrass Short-billed Dowitcher Marsh Periwinkle Phytoplankton Smelt Zooplankton and small crustaceans Soft-shelled clam Clamworm Bacteria Producer to primary consumer Primary to secondary consumer Secondary to higher-level consumer All consumers and producers to decomposers Fig. 6-7a, p. 131

  18. Natural capital: some components and interactions in a salt marsh ecosystem in a temperate area such as the United States. When these organisms die, decomposers break down their organic matter into minerals used by plants. Colored arrows indicate transfers of matter and energy between consumers (herbivores), secondary or higher-level consumers (carnivores), and decomposers. Organisms are not drawn to scale. Fig. 6-7b, p. 131

  19. Mangrove Forests • Are found along about 70% of gently sloping sandy and silty coastlines in tropical and subtropical regions. Figure 6-8

  20. Estuaries and Coastal Wetlands: Centers of Productivity • Estuaries and coastal marshes provide ecological and economic services. • Filter toxic pollutants, excess plant nutrients, sediments, and other pollutants. • Reduce storm damage by absorbing waves and storing excess water produced by storms and tsunamis. • Provide food, habitats and nursery sites for many aquatic species.

  21. Rocky and Sandy Shores: Living with the Tides • Organisms experiencing daily low and high tides have evolved a number of ways to survive under harsh and changing conditions. • Gravitational pull by moon and sun causes tides. • Intertidal Zone: area of shoreline between low and high tides.

  22. Rocky and Sandy Shores: Living with the Tides • Organisms in intertidal zone develop specialized niches to deal with daily changes in: • Temperature • Salinity • Wave action Figure 6-9

  23. Rocky Shore Beach Hermit crab Sea star Shore crab High tide Periwinkle Sea urchin Anemone Mussel Low tide Sculpin Barnacles Kelp Sea lettuce Monterey flatworm Nudibranch Fig. 6-9, p. 132

  24. Barrier Beach Beach flea Peanut worm Tiger Beetle Blue crab Clam Dwarf Olive High tide Sandpiper Ghost Shrimp Low tide Silversides Mole Shrimp White sand macoma Moon snail Sand dollar Fig. 6-9, p. 132

  25. Barrier Islands • Low, narrow, sandy islands that form offshore from a coastline. • Primary and secondary dunes on gently sloping sandy barrier beaches protect land from erosion by the sea. Figure 6-10

  26. Primary Dune Secondary Dune Bay or Lagoon Ocean Beach Trough Back Dune No direct passage or building No direct passage or building Limited recreation and walkways Most suitable for development Intensive recreation, no building Intensive recreation Grasses or shrubs Bay shore No filling Taller shrubs Taller shrubs and trees Fig. 6-10, p. 133

  27. Threats to Coral Reefs:Increasing Stresses • Biologically diverse and productive coral reefs are being stressed by human activities. Figure 6-11

  28. Gray reef shark Green sea turtle Sea nettle Fairy basslet Blue tangs Parrot fish Sergeant major Brittle star Hard corals Algae Banded coral shrimp Phytoplankton Symbiotic algae Coney Zooplankton Blackcap basslet Sponges Moray eel Bacteria Producer to primary consumer Primary to secondary consumer Secondary to higher-level consumer All consumer and producers to decomposers Fig. 6-11, p. 134

  29. Natural Capital Degradation Coral Reefs Ocean warming Soil erosion Algae growth from fertilizer runoff Mangrove destruction Bleaching Rising sea levels Increased UV exposure Damage from anchors Damage from fishing and diving Fig. 6-12, p. 135

  30. Biological Zones in the Open Sea:Light Rules • Euphotic zone: brightly lit surface layer. • Nutrient levels low, dissolved O2 high, photosynthetic activity. • Bathyal zone: dimly lit middle layer. • No photosynthetic activity, zooplankton and fish live there and migrate to euphotic zone to feed at night. • Abyssal zone: dark bottom layer. • Very cold, little dissolved O2.

  31. Effects of Human Activities on Marine Systems: Red Alert • Human activities are destroying or degrading many ecological and economic services provided by the world’s coastal areas. Figure 6-13

  32. FRESHWATER LIFE ZONES • Freshwater life zones include: • Standing (lentic) water such as lakes, ponds, and inland wetlands. • Flowing (lotic) systems such as streams and rivers. Figure 6-14

  33. Lakes: Water-Filled Depressions • Lakes are large natural bodies of standing freshwater formed from precipitation, runoff, and groundwater seepage consisting of: • Littoral zone (near shore, shallow, with rooted plants). • Limnetic zone (open, offshore area, sunlit). • Profundal zone (deep, open water, too dark for photosynthesis). • Benthic zone (bottom of lake, nourished by dead matter).

  34. Lakes: Water-Filled Depressions • During summer and winter in deep temperate zone lakes the become stratified into temperature layers and will overturn. • This equalizes the temperature at all depths. • Oxygen is brought from the surface to the lake bottom and nutrients from the bottom are brought to the top. • What causes this overturning?

  35. Lakes: Water-Filled Depressions Figure 6-15

  36. Sunlight Painted turtle Green frog Blue-winged teal Muskrat Pond snail Littoral zone Limnetic zone Diving beetle Plankton Profundal zone Benthic zone Northern pike Yellow perch Bloodworms Fig. 6-15, p. 137

  37. Effects of Plant Nutrients on Lakes:Too Much of a Good Thing • Plant nutrients from a lake’s environment affect the types and numbers of organisms it can support. Figure 6-16

  38. Effects of Plant Nutrients on Lakes:Too Much of a Good Thing • Plant nutrients from a lake’s environment affect the types and numbers of organisms it can support. • Oligotrophic (poorly nourished) lake: Usually newly formed lake with small supply of plant nutrient input. • Eutrophic (well nourished) lake: Over time, sediment, organic material, and inorganic nutrients wash into lakes causing excessive plant growth.

  39. Effects of Plant Nutrients on Lakes:Too Much of a Good Thing • Cultural eutrophication: • Human inputs of nutrients from the atmosphere and urban and agricultural areas can accelerate the eutrophication process.

  40. Freshwater Streams and Rivers:From the Mountains to the Oceans • Water flowing from mountains to the sea creates different aquatic conditions and habitats. Figure 6-17

  41. Rain and snow Glacier Lake Rapids Waterfall Tributary Oxbow lake Flood plain Salt marsh Deposited sediment Delta Ocean Source Zone Transition Zone Water Sediment Floodplain Zone Fig. 6-17, p. 139

  42. Case Study:Dams, Wetlands, Hurricanes, and New Orleans • Dams and levees have been built to control water flows in New Orleans. • Reduction in natural flow has destroyed natural wetlands. • Causes city to lie below sea-level (up to 3 meters). • Global sea levels have risen almost 0.3 meters since 1900.

  43. Freshwater Inland Wetlands: Vital Sponges • Inland wetlands act like natural sponges that absorb and store excess water from storms and provide a variety of wildlife habitats. Figure 6-18

  44. Freshwater Inland Wetlands: Vital Sponges • Filter and degrade pollutants. • Reduce flooding and erosion by absorbing slowly releasing overflows. • Help replenish stream flows during dry periods. • Help recharge ground aquifers. • Provide economic resources and recreation.

  45. Impacts of Human Activities on Freshwater Systems • Dams, cities, farmlands, and filled-in wetlands alter and degrade freshwater habitats. • Dams, diversions and canals have fragmented about 40% of the world’s 237 large rivers. • Flood control levees and dikes alter and destroy aquatic habitats. • Cities and farmlands add pollutants and excess plant nutrients to streams and rivers. • Many inland wetlands have been drained or filled for agriculture or (sub)urban development.

  46. Impacts of Human Activities on Freshwater Systems • These wetlands have been ditched and drained for cropland conversion. Figure 6-19

More Related