140 likes | 292 Views
Comparison of two gabor texture descriptor for texture classification 紋理 分類 法 中 使用 兩 種賈柏紋理 描述 子進行比對. Speaker: Yi-Chun Ke Adviser: Bo-Chi Lai Ku-Yaw Chang. Outline. Introduction Material and Method Results Conclusion. Introduction. Traditional Garbo texture description
E N D
Comparison of two gabor texture descriptor for texture classification紋理分類法中使用兩種賈柏紋理描述子進行比對 Speaker: Yi-Chun Ke Adviser: Bo-Chi Lai Ku-Yaw Chang
Outline • Introduction • Material and Method • Results • Conclusion
Introduction • Traditional Garbo texture description • two-dimensional Gabor function • m(x, y) = |gmn(x, y) ∗ i(x, y)| • μ:mean δ:standard deviation • s:scale k:orientation • Descriptors=2 × s × k + 2
Introduction • Rayleigh Garbo texture description • 1-D Gabor function • m(x) = |gmn(x) ∗ i(x)| • s:scale k:orientation • Descriptors=s × k + 2
Introduction • Back propagation neural network(BPNN)
Method • Traditional Gabor texture descriptor • S=4 scales • K=6 orientations • Descriptors=2 × s × k + 2=50 • Rayleigh model Gabor texture descriptor • S=4 scales • K=6 orientations • Descriptors= s × k + 2=26
Method • Back propagation neural network(BPNN) • input nodes number:50 or 26 • output nodes number: 4 • hidden nodes: 10
Material Data 2 Data 1 Data 3
Results dataset 1 traditional Gabor descriptor dataset 1 Rayleigh model Gabor descriptor
Results dataset 2 traditional Gabor descriptor dataset 2 Rayleigh model Gabor descriptor
Results dataset 3 traditional Gabor descriptor dataset 3 Rayleigh model Gabor descriptor
References • James A. Freeman and David M. Skapura, Netuoral Networks Algorithms,Applications,and Programming Techniques,1991,90-93 • SitaramBhagavathy, Jelena Te si c, and B. S. Manjunath, On the Rayleigh Nature of Gabor Filter Outputs, Digital Object Identifier 10.1109/ICIP Volume 3,2005, I11 – 745- I11 – 748 • Xu Zhan, Xingbo Sun, Lei Yuerong, Comparison of two gabor texture descriptor for texture classification , Information Engineering, 2009. ICIE '09. WASE International Conference on Volume 1, 2009, 52 – 56 • Technology Exponent • http://www.tek271.com/?about=docs/neuralNet/IntoToNeuralNets.html