380 likes | 636 Views
Relativistic parameterization of the SCC-DFTB method. Henryk Witek Institute of Molecular Science & Department of Applied Chemistry National Chiao Tung University Hsinchu, Taiwan. Aims. Provide the DFTB community with a general and easy-to-use tool for developing Slater-Koster files
E N D
Relativistic parameterization of the SCC-DFTB method Henryk Witek Institute of Molecular Science & Department of Applied Chemistry National Chiao Tung University Hsinchu, Taiwan 232nd ACS meeting in SF, 12.09.2006
Aims • Provide the DFTB community with a general and easy-to-use tool for developing Slater-Koster files • Develop a reliable set of SCC-DFTB parameters suitable for modeling chemical reactions
Requirements • Important issues of the project • general character • relativistic framework • well-defined procedure • high automaticity • error control – test suite
Theoretical framework • 4-component Dirac-Kohn-Sham equation • Modification of relativistic Dirac-Slater code of J.P. Desclaux • Comp. Phys. Comm. 1, 216 (1969) • Comp. Phys. Comm. 9, 31 (1975) • Density confinement • Spinor confinement
Slater-Koster files • One-center quantities • orbital energies • orbital hardness • orbital spin-densities interaction parameters • Two-center quantities • Hamiltonian integrals • overlap integrals • repulsive potentials
Input description • Atomic information • nuclear charge • number of electrons • shell occupations • Method information • exchange-correlation functional type • confinement radius • way to construct molecular XC potential • density superposition • potential superposition
Output: spinors of carbon * atom electronic structure and final shell energies: shell type occupation final energy ======== ======== ========== 1 S1/2 2.00 -11.29598 2 S1/2 2.00 -0.44465 2 P1/2 1.00 -0.12665 2 P3/2 1.00 -0.12623 * radial overlap integrals for spinors spinor 1 spinor 2 overlap integral ====== ====== =========== 1 S1/2 2 S1/2 -0.000000000022
Output: spinors of lead * atom electronic structure and final shell energies: shell type occupation final energy ======= ======== ========= 1 S1/2 2.00 -3256.80560 2 S1/2 2.00 -585.97772 2 P1/2 2.00 -564.09214 2 P3/2 4.00 -482.19388 3 S1/2 2.00 -141.89459 … … … 5 D3/2 4.00 -0.79336 5 D5/2 6.00 -0.68107 6 S1/2 2.00 -0.33752 6 P1/2 2.00 -0.09002 6 P3/2 0.00 -0.04704
Output: spinors of lead * radial overlap integrals for spinors spinor 1 spinor 2 overlap integral ====== ====== =========== 1 S1/2 2 S1/2 0.000000000068 1 S1/2 3 S1/2 0.000000000016 2 S1/2 3 S1/2 0.000000000186 2 P1/2 3 P1/2 0.000000000099 2 P3/2 3 P3/2 0.000000000094 … … … 2 P3/2 6 P3/2 0.000000000048 3 P3/2 6 P3/2 -0.000000000358 4 P3/2 6 P3/2 -0.000000001312 5 P3/2 6 P3/2 0.000000000096
Output: atomic density * error for the fitted atomic density at grid points density norm1 norm2 norm∞ ====== ======= ====== ====== dn 0.000010 0.000019 0.000104 * renormalization of fitted density => density renormalized from 5.999981 to 6.000000 electrons C * error for the fitted atomic density at grid points density norm1 norm2 norm∞ ====== ======= ====== ====== dn 0.030532 0.049705 0.147628 * renormalization of fitted density => density renormalized from 82.000529 to 82.000000 electrons Pb
Semi-relativistic orbitals • Scalar relativistic valence orbitals are obtained by: • neglecting small component • averaging spin-orbit components of every scalar orbital V.Heera, G. Seifert, P. Ziesche, J. Phys. B 17, 519 (1984)
Output: orbitals of carbon * info about scalar atomic orbitals num orbital occupation final energy type ==== ===== ======== ========= ===== 1 1s 2.00 -11.29598 core 2 2s 2.00 -0.44465 valence 3 2p 2.00 -0.12637 valence * error for the fitted curve at grid points orbital norm1 norm2 norm∞ ===== ====== ====== ====== 2s 0.000231 0.000721 0.005025 2p 0.000013 0.000025 0.000108 * renormalization after fit and neglecting small component => orbital 2s renormalized from 0.999957 to 1.0d0 => orbital 2p renormalized from 0.999957 to 1.0d0
Output: orbitals for lead * info about scalar atomic orbitals num orbital occupation final energy type ==== ====== ======== ========== ===== 1 1s 2.00 -3256.80560 core 2 2s 2.00 -585.97772 core 3 2p 6.00 -509.49330 core 4 3s 2.00 -141.89459 core 5 3p 6.00 -119.52024 core 6 3d 10.00 -94.16394 core 7 4s 2.00 -32.79553 core 8 4p 6.00 -25.30912 core 9 4d 10.00 -15.92391 core 10 4f 14.00 -5.84011 core 11 5s 2.00 -5.53058 valence 12 5p 6.00 -3.33518 valence 13 5d 10.00 -0.72598 valence 14 6s 2.00 -0.33752 valence 15 6p 2.00 -0.06137 valence
Output: orbitals for lead * fitting valence orbitals with gaussians * error for the fitted curve at grid points orbital norm1 norm2 norm∞ ===== ====== ====== ======= 5s 0.000048 0.000138 0.002025 5p 0.000047 0.000094 0.000988 5d 0.000143 0.000245 0.000807 6s 0.000108 0.000257 0.003610 6p 0.000026 0.000045 0.000371 * renormalization after fit and neglecting small component => orbital 5s renormalized from 0.999235 to 1.0d0 => orbital 5p renormalized from 0.990674 to 1.0d0 => orbital 5d renormalized from 0.998799 to 1.0d0 => orbital 6s renormalized from 0.999913 to 1.0d0 => orbital 6p renormalized from 0.991615 to 1.0d0
Relativistic vs. non-relativistic atomic orbitals: carbon atom
Relativistic vs. non-relativistic atomic orbitals: carbon atom
Relativistic vs. non-relativistic atomic orbitals: lead atom
Relativistic vs. non-relativistic atomic orbitals: lead atom
Confinement potential • Additional term Vconf in Dirac-Kohn-Sham effective potential • contraction of orbital’s exponential tail • relaxation of basis set • additional variational parameter in the formalism
Repulsive potentials • Effective two-center, distance-dependent potentials accounting for • repulsion between atomic chemical cores • double counting terms in electronic part • Total DFTB energy is
Constructing C-C repulsive potential M. Sternberg, Ph.D. Thesis
repulsive C-C potential Malolepsza, Witek, and Morokuma, ChPL 412, 237 (2005)
performance of new C-C potential Malolepsza, Witek, and Morokuma, ChPL 412, 237 (2005)
Analytical form of potentials • Atomization energies
Analytical form of potentials • Equilibrium structures
First derivatives of repulsive potential NO2 O3 NO2- H2O2 H2O H2O2 H3O+ NH3 O3 H2 O2
First derivatives of repulsive potential NO2- HNO NO2, HNO NO NH3 HNO H2O2 H2O2 H3O+ H2O
Conclusions • Convenient relativistic tool for automatic DFTB parameterization is suggested • New form of potential parameterization is proposed
Acknowledgements • Christof Köhler • Keiji Morokuma • Marcus Elstner • Thomas Frauenheim