1 / 13

A new RFQ cooler: concept, simulations and status

T rapped R adioactive I sotopes : m icro-laboratories for Fundamental P hysics. A new RFQ cooler: concept, simulations and status. E. Traykov. Krakow, 3-6 June 2004. TRI m P project and facility Our concept Prototype tests Our design Simulations Conclusion. TRI  P Group:

hollie
Download Presentation

A new RFQ cooler: concept, simulations and status

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TrappedRadioactiveIsotopes: micro-laboratoriesfor FundamentalPhysics A new RFQ cooler: concept, simulations and status E. Traykov Krakow, 3-6 June 2004 • TRImP project and facility • Our concept • Prototype tests • Our design • Simulations • Conclusion TRIP Group: G.P. Berg, U. Dammalapati, P.G. Dendooven, O. Dermois, G. Ebberink M.N. Harakeh, R. Hoekstra, L. Huisman, K. Jungmann, H. Kiewiet, R. Morgenstern, J. Mulder, G. Onderwater, A. Rogachevskiy, M. Sanchez-Vega, M. Sohani, M. Stokroos, R. Timmermans, E. Traykov,O. Versolato, L. Willmann and H.W.Wilschut

  2. TRImP project and facility TrappedRadioactiveIsotopes: micro-laboratoriesfor FundamentalPhysics AGOR cyclotron Magnetic separator D Q Q D Production Target Wedge Q MeV Q Q Nuclear Physics D Q Magnetic Separator D Production target Ion Catcher Q keV Q Atomic Physics eV RFQ Cooler meV Ion catcher (gas-cell or thermal ioniser) AGOR cyclotron MOT RFQ cooler/buncher MOT Beyond the Standard Model TeV Physics Particle Physics neV MOT Low energy beam line

  3. RF capacitive coupling 2 x 330 mm • DC drag resistor chain • Standard vacuum parts (NW160) • UHV compatible design and materials • Electronics designed for large range of isotopes TrappedRadioactiveIsotopes: micro-laboratoriesfor FundamentalPhysics Our RFQ cooler/buncher concept U+VcosWt -(U+VcosWt) Buffer gas pressure (He): Trap position ~10-1 mbar ~10-3 mbar 10eV RFQ ion cooler thermal RFQ ion buncher Switching on end electrodes

  4. TrappedRadioactiveIsotopes: micro-laboratoriesfor FundamentalPhysics RFQ cooler prototype tests Tests: • RFQ in vacuum • Transverse cooling • Velocity damping • With and without a drag voltage on the segments

  5. Our RFQ cooler/buncher design Stainless steel rods OFHC copper Kapton foil 12.5mm 120 pF ~10-3 mbar He buffer gas Pressure cooler: ~10-1 mbar TrappedRadioactiveIsotopes: micro-laboratoriesfor FundamentalPhysics Separate connections for trap segments Preset frequencies: 0.5MHz, 1 MHz, 1.5 MHz RF amplitude: 150 V (peak-to-peak) Changeable separation electrodes with different aperture diameters UHV compatible resistors for drag voltage: Uncoated, 2.2 kW Buffer gas: Helium for light ions (i.e. Na-21) (Heavier gas may be considered for Ra ions)

  6. Simulations and calculation of E field TrappedRadioactiveIsotopes: micro-laboratoriesfor FundamentalPhysics • Simulations • Real 3D geometry • Material properties • Geometry separated to smaller parts • Fine mesh and grid size • 3D electric field map (RF and DC) F(x,y,z,t) = m*(dV(x,y,z,t)/dt) F(x,y,z,t) = E(x,y,z,t)*q dV(x,y,z,t) =(E(x,y,z,t)*q/m)*dt dr(x,y,z,t) =dV(x,y,z,t)*dt FEMLAB calculation examples: RF electric potential DC drag potential

  7. Ion tracing and distributions TrappedRadioactiveIsotopes: micro-laboratoriesfor FundamentalPhysics • Ion tracing in RFQ guide • Buffer gas cooling + DC drag • Phase space distributions • Ion trapping and extraction • Confinement and transmission • Program input: • Ion charge • Ion mass • KE • Phase space distribution • Electric field map (RF and DC) • fRF • RF amplitude • Drag voltage step • Gas pressure • Standard ion mobility • Number of ions • Time step • Program output: • Single ion tracing • Phase space distribution • Confinement • Transmission through exit aperture aU qmax = 0.908 qV Mathieu equation: RF only (U=0)

  8. Optimization using the simulations Gas pressure  drag voltage Buffer gas pressure RF: 1500 kHz, 21Na+, 10 eV 950 m/s maximum transverse velocity 0.5 V drag voltage step ~ 2 eV q=0.5 p=0.025 mbar drag voltage=0.5V TrappedRadioactiveIsotopes: micro-laboratoriesfor FundamentalPhysics • Main goal: collect all ions • Confinement and transmission • Optimize parameters (regions of stable operation): • pressure and type of gas • aperture diameters • beam settings at entrance • drag voltage step • potentials on separation electrodes • accumulation time (buncher) • trap potential depth and shape • Questions: • phase dependence (cooler-buncher) • phase dependence (switching) • where do we loose ions (why?)

  9. Drag voltage and pressure dependence Drag voltage step 21Na+, 10 eV Pressure: 0.01 mbar RF: 1500 kHz 950 m/s maximum transverse velocity f2 mm aperture 0.01 mbar – too low, exit energy high Drag voltage step 21Na+, 10 eV Pressure: 0.025 mbar RF: 1500 kHz 950 m/s maximum transverse velocity f2 mm aperture 0.025 mbar low pressure limit TrappedRadioactiveIsotopes: micro-laboratoriesfor FundamentalPhysics

  10. Frequency and focus dependence Frequency 21Na+, 10 eV 0.1 mbar buffer gas pressure 950 m/s maximum transverse velocity 0.5 V drag voltage step f2 mm aperture Higher frequency is preferred Maximum transverse velocity 21Na+, 10 eV 1500 kHz radio frequency 950 m/s maximum transverse velocity 0.5 V drag voltage step f2 mm aperture Beam properties at entrance: just focus TrappedRadioactiveIsotopes: micro-laboratoriesfor FundamentalPhysics

  11. Cool and select (work in progress) TrappedRadioactiveIsotopes: micro-laboratoriesfor FundamentalPhysics RF and DC operation: Mass filter a Mass selectivity for 23Na+ / 21Na+ m<M M Scan line: U/V = const=0.17 m>M q 0.706 mass resolution  frequency

  12. LEBL and optimization of parameters (work in progress) ET TrappedRadioactiveIsotopes: micro-laboratoriesfor FundamentalPhysics • LEBL simulations: • Extraction tube • Einzel lenses • Electrostatic steerers • Quadrupole deflectors Ion catcher RFQ cooler/buncher MOT EL EL Low energy beam line EL EL MOT EL EL EL EL EL QD QD

  13. TrappedRadioactiveIsotopes: micro-laboratoriesfor FundamentalPhysics Conclusion • Novel RF coupling and DC resistor chain tested on prototype RFQ • Results from simulations in good agreement with experiment • Mechanical, electrical and vacuum design completed • RFQ cooler and buncher system ready soon • Continue with simulations (LEBL)

More Related