1 / 30

Direct Measurements of the Neutrino Mass

Direct Measurements of the Neutrino Mass. Klaus Eitel Forschungszentrum Karlsruhe Institute for Nuclear Physics klaus.eitel@ik.fzk.de. Direct Measurements of the Neutrino Mass. neutrino masses in particle physics & cosmology (mass scenarios, n ´s as HDM) micro-calorimeters

hollis
Download Presentation

Direct Measurements of the Neutrino Mass

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Direct Measurements of the Neutrino Mass Klaus Eitel Forschungszentrum Karlsruhe Institute for Nuclear Physics klaus.eitel@ik.fzk.de Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  2. Direct Measurements of the Neutrino Mass • neutrino masses • in particle physics & cosmology • (mass scenarios, n´s as HDM) • micro-calorimeters • (Mibeta: 187Re in AgReO4) • electrostatic spectrometers • (Mainz, Troitsk, KATRIN) Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  3. neutrino masses and schemes „normal“ mass hierarchy m1<m2<m3 quasi-degenerate first task: decide n mass scenario hierarchical Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  4. neutrino masses and cosmology r [% of rcr] second task: decide whether n contribute as Hot Dark Matter 1087n´s per flavor from BB! (without n annihilation; astro-ph/0404585) Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  5. Neutrino Mass Measurements Strategies cosmology & structure formation astrophysics: SN ToF measurements 0nbb decay: b decay kinematics: microcalorimeters MAC-E spectrometers NEMO3 76Ge @ LNGS ´90-´03 (71.7 kg×y) 2nbb D.N. Spergel et al: Smn < 0.69 eV (95%CL) S.W. Allen et al: Smn = 0.56 eV (best fit) |mee|=0.44+0.13-0.2 eV 187Re 3H SuperK, SNO, OMNIS + grav.waves: potential for ~1eV sensitivity? Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  6. b – decay kinematics phase space determines energy spectrum transition energy E0 = Ee + En (+ recoil corrections) dN/dE = K × F(E,Z) × p × Etot × (E0-Ee) × [ (E0-Ee)2 – mn2]1/2 theoretical b spectrum near endpoint experimental observable 1 0.8 0.6 0.4 0.2 0 • strong source (high count rate near E0) • small endpoint energy E0 • excellent energy resolution • long term stability • low bg rate rel. rate [a.u.] mn = 0eV mn = 1eV -3 -2 -1 0 Ee-E0 [eV] Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  7. b – decay kinematics and 0nbb decay • b-decay kinematics0nbb decay • direct n mass determination only possible for Majorana n´s • if n masses are not resolved • average neutrino mass coherent sum of mass EV´s m2(ne) = S |Uei2| m(ni)2mee(n) = | S |Uei|2 eia(i)m(ni)| incoherent sum, real average, partial cancellation possible since 0 ≤ |Uei2| ≤ 1 (not fully since SNO says: no max. solar mixing) m2(ne)vs. mee(n):complementary information, differences due to Dirac neutrino CP-phases Problems with nuclear matrix elements Other processes (right-handed currents, Susy-particles, ...) Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  8. m calorimeters for 187Re b decay • neutrino mass measurement with • array of 10 AgReO4 crystals • lower pile up • higher statistics • MIBETA experiment • (Milano, Como, Trento) • M.Sisti et al, NIM A520(2004)125 • A.Nucciotti et al, NIM A520(2004)148 • C. Arnaboldi et al, PRL 91, 16802 (2003) • MANU2 experiment • (Genoa) • F. Gatti, Nucl. Phys. B • (Proc.Suppl.) 91 (2001) 293) E0 = 2.46 keV Top ~ 70-100mK Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  9. m calorimeters for 187Re b decay Kurie plot of 6.2 ×106187Re b decay events above 700 eV • fit with function • free fit parameters: • b endpoint energy • mn2 • b spectrum normal. • pile-up amplitude • background level Mibeta Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  10. 187Re b decay endpoint and mn E0 = 2465.3 ± 0.5stat± 1.6syst eV (8751 h*mg, NIMA520, 2004) = 2466.1 ± 0.8stat± 1.5syst eV (4485 h*mg, PRL91,2003) mn2 = -112 ± 207 ± 90 eV2 mn< 15 eV (90%CL) future: proposal for a new calorimeter expt. with ~2-3 eV sensitivity foreseen 2007 (?) F. Gatti (n´04): 0.5g Re 1–1.7 eV sensitivity expected fit range: 0.9 to 4 keV fit function Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  11. principle of an electrostatic filter with magnetic adiabatic collimation (MAC-E) Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  12. principle of an electrostatic filter with magnetic adiabatic collimation (MAC-E) adiabatic magnetic guiding of b´s along field lines in stray B-field of s.c. solenoids: Bmax = 6 T Bmin = 3×10-4 T energy analysis by static retarding E-field with varying strength: high pass filter with integral b transmission for E>qU Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  13. magnetic spectrometers & MAC-E filters Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  14. latest results from the MAINZ experiment frozen T2 on HOP graphite T=1.86K A=2cm2, d~130ML (~45nm) 20mCi activity spectr.: l=2m, Ø=0.9m DE=4.8eV condensed T2 film  neighbour excitations W.Kolos et al., PRA37(1988): anex=5.9%; e=14.6eV Mainz 1998-2001: anex=(5±1.6±2.2)% with e=16.1eV C. Kraus, Eur.Phys.J. C33, s01 (2004), n´04 free fit for anex, mn2 for last 170eV 1994-2001 improvements in systematics: • roughening of T2 film • inelastic scattering • self charging of T2 film Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  15. From current to future experiments Mainz: Troitsk: mn2 = -1.2(-0.7)± 2.2 ± 2.1 eV2 mn2 = -2.3 ± 2.5 ± 2.0 eV2 mn < 2.2(2.3) eV (95%CL) mn < 2.05 eV (95%CL) C. Weinheimer, Nucl. Phys. B (Proc. Suppl.) 118 (2003) 279 V. Lobashev, Nucl.Phys. A719 (2003) 153c C. Kraus, Eur.Phys.J. C33 (neighbour excit´s self-consistent) (allowing for a step function near endpoint) • aim: improvement of mn by one order of magnitude (2eV  0.2eV ) •  improvement of uncertainty on mn2 by 100 (4eV2  0.04eV2) • statistics: • stronger Tritium source (>>1010b´s/sec) • longer measurement (~100 days  ~1000 days) energy resolution: • DE/E=Bmin/Bmax  spectrometer with DE=1eV  Ø 10m UHV vessel Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  16. The KArlsruhe TRItium Neutrino Experiment Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  17. KATRINlocation at FZKarlsruhe KATRIN ~70 m beamline, 40 s.c. solenoids Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  18. Windowless Gaseous Tritium Source at Tritium Laboratory Karlsruhe single WGTS solenoid (l=1m) WGTS parameters: total length l = 10m, inner diam. Ø = 90mm, Bsource = 3.6T, isotopic purity > 95% T2 T = (27± 0.03)K (l=10m) Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  19. WGTS source characteristics pinj = 3.0 × 10-3 mbar ( at T=27K) qinj = 1.85 mbar l/s = 1020 mol./s = 4.7 Ci/s (~ 40g T2 per day if no closed loop) isotopic purity (±2‰) monitored by Laser Raman spectroscopy Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  20. electrostatic spectrometers tandem design electrostatic pre-filtering & analysis of tritium ß-decay electrons ~1010b´s/sec ~103b´s/sec ~10 b´s/sec (qU=E0-25eV) pre-spectrometer main spectrometer fixed retarding potential ≈ 18.45kV variable retarding potential 18.5 – 18.6 kV Ø = 1.7m; length = 3.5m Ø = 10m; length = 24m DE ≈ 60 eV DE = 0.93 eV (18.575keV)  detailed el.-magn. design! Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  21. KATRIN Main Spectrometer • stainless steel vessel (Ø=10m & l=24m) on HV potential • minimisation of bg  UHV: p ≤ 10-11 mbar  „massless“ inner electrode system Mainz V results 2.8mHz inner electrode installed in Mainz spectrometer for background tests UHV requirements: outgassing < 10-13 mbar l/s inner surface ~ 800m2 volume to pump ~ 1500m3 intrinsic det. bg 1.6mHz Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  22. Detector concept the prespectrometer detector: prototype of KATRIN main detector PIN diode array segmented PIN-diode 44 x 44 mm² 64 segments 5x5 mm², bonded onto ceramics with FET stage T-structure multipixel PIN diode 8x8 Pin-Diode from Canberra SemiConductors backside of UHV flange, with board for 64 preamps 64 channel FET stage Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  23. KATRIN sensitivity & discovery potential design optimisation ´01 ´03  statistical accuracy on mn2 LoI 9/2001 Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  24. KATRIN sensitivity & discovery potential design optimisation ´01 ´03  statistical accuracy on mn2 2× stronger gaseous source (Ø=75mm Ø=90mm) required Ø=10m spectrometer) isotopic T purity 70%  95% LoI 9/2001 LoI 9/2001 Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  25. KATRIN sensitivity & discovery potential design optimisation ´01 ´03  statistical accuracy on mn2 2× stronger gaseous source (Ø=75mm Ø=90mm) required Ø=10m spectrometer) optimised measuring point distribution (~5 eV below E0) LoI 9/2001 reference Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  26. KATRIN sensitivity & discovery potential design optimisation ´01 ´03  statistical accuracy on mn2 2× stronger gaseous source (Ø=75mm Ø=90mm) required Ø=10m spectrometer) optimised measuring point distribution (~5 eV below E0) active background reduction by inner electrode system, low background detector (needs further detailed tests) LoI 9/2001 reference Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  27. KATRIN - systematic uncertainties unaccounted variances s2 lead to shift of m2: 1. inelastic scatterings of ß´s inside WGTS requires dedicated e-gun measurements, unfolding techniques for response fct. 2. HV stability of retarding potential required: ~ppm level precision HV divider (PTB), monitor spectrometer beamline 3. fluctuations of WGTS column density required < 0.1% stability rear detector, Laser-Raman spectroscopy, T=30K stabilisation, e-gun measurements 4. WGTS charging due to remaining ions (MC: f<20mV) inject low energy meV electrons from rear side, diagnostic tools available 5. final state distribution reliable quantum chem. calculations a few contributions with each Dm2n≤ 0.007 eV2 Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  28. KATRIN sensitivity & discovery potential expectation: after 3 full beam years ssyst~sstat mn = 0.35eV (5s) mn = 0.3eV (3s) 5s discovery potential mn < 0.2eV (90%CL) sensitivity Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  29. status of hardware activities pre-spectrometer pre-spec detector assembly differential pumping section WGTS Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

  30. conclusions & outlook • absolute neutrino mass of prime importance • microcalorimeter (MIBETA 187Re): mn<15eV(90%CL)  2eV in 2007? • MAC-E spectrometers (Mainz, Troitsk) mn<2.3eV(95%CL) (sensitivity limit) • KATRIN sensitivity mn<0.2eV(90%CL) discovery potential mn=0.35eV at 5s design optimized; first components; commissioning in 2008 Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004

More Related