420 likes | 564 Views
Real-Time Rendering Paper Presentation Logarithmic Perspective Shadow Maps. Brandon Lloyd Naga Govindaraju Cory Quammen Steve Molnar Dinesh Manocha Slides refer to Brandon Lloyd’s Presented by Bo-Yin Yao 2010.3.11. Outlines. Introduction Related work
E N D
Real-Time Rendering Paper Presentation Logarithmic Perspective Shadow Maps Brandon Lloyd Naga Govindaraju Cory Quammen Steve Molnar Dinesh Manocha Slides refer to Brandon Lloyd’s Presented by Bo-Yin Yao 2010.3.11
Outlines • Introduction • Related work • Logarithmic perspective warping • Error analysis • Results • Conclusion
Outlines • Introduction • Related work • Logarithmic perspective warping • Error analysis • Results • Conclusion
Standard Shadow Map undersampled aliasing
Perspective Warping aliasing
Logarithmic perspective shadow maps (LogPSMs) • Warp the shadow map using a perspective transformation with an additional logarithmic warping • Reduce maximum error to levels that are nearly optimal for scene-independent algorithms • Similar performance to PSM with less error • Similar error to PSM with less texture resolution
Outlines • Introduction • Related work • Logarithmic perspective warping • Error analysis • Results • Conclusion
Single shadow map warping • Perspective shadow maps (PSMs) [Stamminger and Drettakis 2002]
Single shadow map warping • Light-space perspective shadow maps (LiSPSMs) [Wimmer et al. 2004] • Trapezoidal shadow maps [Martin and Tan 2004]
Face partitioning • Perspective warped cube maps[Kozlov 2004]
z-partitioning • Cascaded shadow maps [Engel 2007] • Parallel split shadow maps [Zhang et al. 2006] • Separating-plane shadow maps[Mikkelsen 2007] z
Adaptive partitioning • Adaptive shadow maps [Fernando et al. 2001] • Queried virtual shadow maps[Geigl and Wimmer 2007] • Fitted virtual shadow maps [Geigl and Wimmer 2007] • Resolution matched shadow maps [Lefohn et al. 2007] • Tiled shadow maps[Arvo 2004] • Multiple shadow frusta [Forsyth 2006]
Irregular z-buffer • GPU implementations [Arvo 2006; Sintorn et al. 2008] • Hardware architecture[Johnson et al. 2005]
Sampling modified methods • Scene-independent • Methods • Single SM warping • Face partitioning • z-partitioning • Benefit • Lower, nearly constant cost • Drawback • Higher error • Scene-dependent • Adaptive • Irregular
Sampling modified methods • Scene-dependent • Methods • Adaptive • Irregular • Benefit • Lower error • Drawback • Higher, variable cost
Filtering methods • Percentage closer filtering[Reeves et al. 1987] • Variance shadow maps[Donnely and Lauritzen 2006; Lauritzen and McCool 2008] • Convolution shadow maps[Annen et al. 2007] • Exponential shadow maps[Salvi 2008; Annen et al. 2008]
Outlines • Introduction • Related work • Logarithmic perspective warping • Error analysis • Results • Conclusion
Perspective warping • PSM • Tight fit to the view frustum • Low error in x, but high error along y • LiSPSMs • Relax the warping to reduce the error in y, but this increases the error in x PSM LiSPSM moderate error high error y x moderate error low error
Logarithmic + perspective warping • Starts with perspective projection similar to PSMs • Then applies a logarithmic transformation to correct for the high error in y
Logarithmic + perspective warping low error high error y x Logarithmictransform Perspectiveprojection
Logarithmic + perspective warping • Causes planar primitives to become curved → need a specialized rasterization to render
Logarithmic rasterization • Brute-force rasterization • Use a fragment program • Slower than standard rasterization • disables optimizations • z-culling • double-speed z-only rendering • breaks linear depth compression schemes
Outlines • Introduction • Related work • Logarithmic perspective warping • Error analysis • Results • Conclusion
Combinations of algorithms P - Perspective warping LogP - Logarithmic perspective warping ZP - z-partitioning FP - face partitioning single SM Standard P LogP z-partitioning ZP ZP+P ZP+LogP face-partitioning - FP+P FP+LogP
Quantifying aliasing error shadow map light light image plane eye image plane
Quantifying aliasing error • Maximum error: • over a light ray • over the frustum • over all light positions light
Scene-independent maximum error Standard ZP5+P FP+P FP+LogP
Near optimal, scene-independent warping • Minimizes maximum error over a face • Too complicated for practical use • Used as a baseline
Error distribution along a face Uniform LiSPSM PSM LogPSM max error in t max error in s far far near near Uniform LiSPSM PSM LogPSM
Maximum error for varying light directions with z-partitioning direction to light view direction
Outlines • Introduction • Related work • Logarithmic perspective warping • Error analysis • Results • Conclusion
Single shadow map LogPSM • LogPSMs have • lower maximum error • more uniform error LogPSM LiSPSM Error color mapping LiSPSM LogPSM
Partitioning schemes FP+P Standard ZP5+P FP+LogP
Outlines • Introduction • Related work • Logarithmic perspective warping • Error analysis • Results • Conclusion
Benefits of LogPSMs • LogPSMs are close to optimal for scene-independent algorithms • LogPSMs achieve low error with few shadow maps • Can replace perspective warping in scene-independent directly • single shadow map • z-partitioning • face partitioning
Limitations of LogPSMs • Not currently supported in hardware • Share problems as other warping algorithms: • Do not handle aliasing error due to surface orientation • Face partitioning needed for most benefit • Not as simple as z-partitioning • Can exhibit shearing artifacts