160 likes | 334 Views
TinyOS Meets Silicon. Jason Hill NEST Retreat Summer 2002. Breaking Out. COTS hardware has brought us this far but… Next step is custom silicon Like it or not, our platform progress is tied to hardware/silicon design cycle times Silicon give us: Size Cost Performance. Talk Outline.
E N D
TinyOS Meets Silicon Jason Hill NEST Retreat Summer 2002
Breaking Out • COTS hardware has brought us this far but… • Next step is custom silicon • Like it or not, our platform progress is tied to hardware/silicon design cycle times • Silicon give us: • Size • Cost • Performance
Talk Outline • Design History • First Attempt at Silicon • Chip results • Second generation design • Next Steps
Design Lineage • COTS dust prototypes (Kris Pister et al.) • weC Mote (30 produced) • Rene Mote (850 produced) • Dot (1000 produce) • Mica node (current, 1800 produced) • Time warp accelerator for MICA • Silicon prototype ?
First Silicon Goals • Continue trend of building and evaluating • Goal is to build something to get momentum • Learn “economics of silicon” • RF Accelerator designed as mica add-on • Increase RF transmission speed and reliability while decreasing CPU involvement
Capabilities • RF Communication Support • Start Symbol Detection • Signal clock extraction and continual resynchronization • Transmission and reception buffering to relax CPU real-time constraints • Energy Consumption • 1 Mbps (> 100 uA) • Mote Requires approximately 3mA of CPU.
“Mote Chip” Goals • Replicate and extend the functionality of the MICA • Decrease size of node to cubic millimeters • Reduce cost to <$1 • Include AVR-like* Core, ADC, RF Communication Support, UART, SPI, RAM, Radio, Timing modules • Target shortcoming of COTS capabilities
Experimental Platform • Silicon is hard and expensive • Designs must be correct the first time • Simulation is nice but very time consuming • FPGAs provide essential hardware debugging mechanism
Xilinx XCV2000E 2.5 million gates – 10x the size of an AVR core Also has… Ethernet A/V Encoder Compact Flash Internal and External RAM Mode Chip experimental setup
Communication Interface • Hardware provides ‘AM’ interface • Same functionality originally implemented in hardware • Hardware handles • Message send command with TOSMsgPtr • Hardware signals • Message arrival event with TOSMsgPtr • CPU communication overhead dropped from approx. 2MIPS down to 0.
First Prototype 2mm • IO Pads • RAM blocks • MMU logic • Debug logic • ADC • CPU Core • RF Place Holder Core Area only 50% full…
Chip Area Breakdown • 3K RAM = 1.5 mm2 • CPU Core = 1mm2 • RF COMM stack = .5mm2 • RADIO = .25 mm2 • ADC 1/64 mm2 • I/O PADS
External Components Required • Current Prototype • 2 External clock generators • 1 External radio • Power source • End Goal • 1 External Inductor (RF oscillation) • 1 External Crystal (time keeping) • Power source
Conclusion • Custom Silicon is available to us • Silicon helps with size, performance, and cost • 4mm2 Mote Chip prototype is due back August 1 • Full mote chip to be sent out November ‘02