110 likes | 128 Views
Explore speeding up cardiac arrhythmia simulations using GPGPU for improved treatment outcomes. Learn about the CUDA command, GPU acceleration considerations, and simulation results. Contact Wei Wang at weiwan@udel.edu for details. Collaboration by Wei Wang, H. Howie Huang, Matthew Kay, and John Cavazos from the University of Delaware and The George Washington University.
E N D
GPGPU Accelerated Cardiac Arrhythmia Simulations Wei Wang1, H. HowieHuang2, Matthew Kay2 and John Cavazos1 University of Delaware The George Washington University
Motivation • Cardiac arrhythmia • ~300,000 people/year in the US • Cure • Image-guided ablation therapy • Simulation improves efficacy • Problem • Sequential execution of simulation too slow!
Acceleration Concept N11 N21 N31 Sequential (Running on CPU) Parallel (Enabled by GPGPUs) N12 N22 N32 N13 N23 N33
Acceleration Tool—GPU • Example: NVIDIA Tesla C1060 • 240 Processing Elements • Massively parallel multithreaded • Up to 30720 active threads CPU GPU
Acceleration Considerations • SIMD • Large Matrix • No (Few) Temporal Data Dependency • Acceleration Command—CUDA • Using Atomic Functions*
GPU Acceleration for (Xstep=1;Xstep<Nx+1;++Xstep){ for (Ystep=1;Ystep<Ny+1;++Ystep){ stimulate(); //apply stimulating current brgates(); // update gating equations brcurrents(); // update currents mdiff(); // update diffusion terms } // end Ystep loop } // end Xstep loop bcs(); // apply boundary conditions GPU_ GPU_ GPU_ GPU_
Simulation Results Point Stimulation Electrical Rotor Simulation
Point Simulation Results Speedup (normalized to seq perf) Matrix Sizes
Thank you! Wei Wang weiwang@udel.edu http://www.cis.udel.edu/~wwang Please consider GPGPU