300 likes | 524 Views
Surface Area of Prisms and Cylinders. 10-4. Holt Geometry. Warm Up Find the perimeter and area of each polygon. 1. a rectangle with base 14 cm and height 9 cm 2. a right triangle with 9 cm and 12 cm legs 3. an equilateral triangle with side length 6 cm. Objectives.
E N D
Surface Area of Prisms and Cylinders 10-4 Holt Geometry
Warm Up Find the perimeter and area of each polygon. 1.a rectangle with base 14 cm and height 9 cm 2. a right triangle with 9 cm and 12 cm legs 3. an equilateral triangle with side length 6 cm
Objectives Learn and apply the formula for the surface area of a prism. Learn and apply the formula for the surface area of a cylinder.
Vocabulary lateral face lateral edge right prism oblique prism altitude surface area lateral surface axis of a cylinder right cylinder oblique cylinder
Prisms and cylinders have 2 congruent parallel bases. A lateral faceis not a base. The edges of the base are called base edges. A lateral edgeis not an edge of a base. The lateral faces of a right prismare all rectangles. An oblique prismhas at least one nonrectangular lateral face.
An altitudeof a prism or cylinder is a perpendicular segment joining the planes of the bases. The height of a three-dimensional figure is the length of an altitude. Surface areais the total area of all faces and curved surfaces of a three-dimensional figure. The lateral area of a prism is the sum of the areas of the lateral faces.
The net of a right prism can be drawn so that the lateral faces form a rectangle with the same height as the prism. The base of the rectangle is equal to the perimeter of the base of the prism.
The surface area of a right rectangular prism with length ℓ, width w, and height h can be written as S = 2ℓw + 2wh + 2ℓh.
Caution! The surface area formula is only true for right prisms. To find the surface area of an oblique prism, add the areas of the faces.
Example 1A: Finding Lateral Areas and Surface Areas of Prisms Find the lateral area and surface area of the right rectangular prism. Round to the nearest tenth, if necessary.
Example 1B: Finding Lateral Areas and Surface Areas of Prisms Find the lateral area and surface area of a right regular triangular prism with height 20 cm and base edges of length 10 cm. Round to the nearest tenth, if necessary.
The lateral surfaceof a cylinder is the curved surface that connects the two bases. The axis of a cylinderis the segment with endpoints at the centers of the bases. The axis of a right cylinderis perpendicular to its bases. The axis of an oblique cylinderis not perpendicular to its bases. The altitude of a right cylinder is the same length as the axis.
Example 2A: Finding Lateral Areas and Surface Areas of Right Cylinders Find the lateral area and surface area of the right cylinder. Give your answers in terms of . The radius is half the diameter, or 8 in. L = 2rh = 2(8)(10) = 160 in2 S = L + 2r2 = 160 + 2(8)2 = 288 in2
Example 2B: Finding Lateral Areas and Surface Areas of Right Cylinders Find the lateral area and surface area of a right cylinder with circumference 24 cm and a height equal to half the radius. Give your answers in terms of . Step 1 Use the circumference to find the radius. Circumference of a circle C = 2r Substitute 24 for C. 24 = 2r Divide both sides by 2. r = 12
Example 2B Continued Find the lateral area and surface area of a right cylinder with circumference 24 cm and a height equal to half the radius. Give your answers in terms of . Step 2 Use the radius to find the lateral area and surface area. The height is half the radius, or 6 cm. L = 2rh = 2(12)(6) = 144 cm2 Lateral area S = L + 2r2 = 144 + 2(12)2 = 432 in2 Surface area
Check It Out! Example 2 Continued Find the lateral area and surface area of a cylinder with a base area of 49and a height that is 2 times the radius.
Example 3: Finding Surface Areas of Composite Three-Dimensional Figures Find the surface area of the composite figure.
A right triangular prism is added to the rectangular prism. The surface area of the triangular prism is Example 3 Continued The surface area of the rectangular prism is . . Two copies of the rectangular prism base are removed. The area of the base is B = 2(4) = 8 cm2.
Example 3 Continued The surface area of the composite figure is the sum of the areas of all surfaces on the exterior of the figure. S = (rectangular prism surface area) + (triangular prism surface area) – 2(rectangular prism base area) S = 52 + 36 – 2(8) = 72 cm2
Check It Out! Example 3 Find the surface area of the composite figure. Round to the nearest tenth.
Check It Out! Example 3 Continued Find the surface area of the composite figure. Round to the nearest tenth. The surface area of the rectangular prism is S =Ph + 2B = 26(5) + 2(36) = 202 cm2. The surface area of the cylinder is S =Ph + 2B = 2(2)(3) + 2(2)2 = 20 ≈ 62.8 cm2. The surface area of the composite figure is the sum of the areas of all surfaces on the exterior of the figure.
Check It Out! Example 3 Continued Find the surface area of the composite figure. Round to the nearest tenth. S = (rectangular surface area) + (cylinder surface area) – 2(cylinder base area) S = 202 + 62.8 — 2()(22) = 239.7 cm2
Remember! Always round at the last step of the problem. Use the value of given by the key on your calculator.
Example 4: Exploring Effects of Changing Dimensions The edge length of the cube is tripled. Describe the effect on the surface area.
24 cm Example 4 Continued original dimensions: edge length tripled: S = 6ℓ2 S = 6ℓ2 = 6(24)2 = 3456 cm2 = 6(8)2 = 384 cm2 Notice than 3456 = 9(384). If the length, width, and height are tripled, the surface area is multiplied by 32, or 9.
Check It Out! Example 4 The height and diameter of the cylinder are multiplied by . Describe the effect on the surface area.
11 cm 7 cm Notice than 550 = 4(137.5). If the dimensions are halved, the surface area is multiplied by Check It Out! Example 4 Continued original dimensions: height and diameter halved: S = 2(112) + 2(11)(14) S = 2(5.52) + 2(5.5)(7) = 550 cm2 = 137.5 cm2
Lesson Quiz: Part I Find the lateral area and the surface area of each figure. Round to the nearest tenth, if necessary. 1. a cube with edge length 10 cm 2. a regular hexagonal prism with height 15 in. and base edge length 8 in. 3. a right cylinder with base area 144 cm2 and a height that is the radius
Lesson Quiz: Part II 4. A cube has edge length 12 cm. If the edge length of the cube is doubled, what happens to the surface area? 5. Find the surface area of the composite figure.